Cover image for Perovskites : Structure, Properties and Uses.
Perovskites : Structure, Properties and Uses.
Title:
Perovskites : Structure, Properties and Uses.
Author:
Borowski, Maxim.
ISBN:
9781616688707
Personal Author:
Physical Description:
1 online resource (587 pages)
Series:
Chemical Engineering Methods and Technology
Contents:
PEROVSKITES: STRUCTURE, PROPERTIES AND USES -- PEROVSKITES: STRUCTURE, PROPERTIES AND USES -- CONTENTS -- PREFACE -- Chapter 1 CONTROLLED FABRICATION AND CATALYTIC APPLICATIONS OF SPECIFICALLY MORPHOLOGICAL AND POROUS PEROVSKITE-TYPE OXIDES -- ABSTRACT -- 1. INTRODUCTION -- 2. PREPARATION OF NANO/MICROSCALE PEROVSKITES -- 2.1. Nanoparticle -- 2.2. One-Dimensional Nano/Microstructure -- 2.2.1. Hard-Templating Synthesis -- 2.2.2. Surfactant-Templating Synthesis -- 2.2.3. Hydrothermal Synthesis -- 2.2.4. Novel Solid-State Method -- 2.2.5. Other Methods -- 2.3. Nano/Microcube -- 2.4. Other Specific Morphologies -- 2.5. Macro/Mesoporous Perovskite Synthesis -- 3. PHYSICOCHEMICAL PROPERTIES -- 3.1. Magnetic Property -- 3.2. Electrical Property -- 3.3. Optical Property -- 4. APPLICATIONS IN CATALYSIS -- 4.1. Nitrogen Oxide Elimination -- 4.2. Methane Oxidation -- 4.3. Volatile Organic Compounds Removal -- 4.4. Other Applications -- 5. PERSPECTIVES AND CONCLUDING REMARKS -- REFERENCES -- Chapter 2 PEROVSKITES AND THEIR NANOCOMPOSITES WITH FLUORITE-LIKE OXIDES AS MATERIALS FOR SOLID OXIDE FUEL CELLS CATHODES AND OXYGEN-CONDUCTING MEMBRANES: MOBILITY AND REACTIVITY OF THE SURFACE/BULK OXYGEN AS A KEY FACTOR OF THEIR PERFORMANCE -- ABSTRACT -- 1. INTRODUCTION -- 2. PEROVSKITES -- 2.1. Theory and Experimental Procedures -- Experimental Techniques for Investigation of Transport Properties and Surface Exchange -- Synthesis of perovskites -- 2.2. Phase Composition, Morphology and Structural Features of Perovskites -- 2.3. Surface Composition and Chemical State of Elements in Complex Perovskites -- 2.4. Conductivities of Perovskites -- 2.5. Oxygen Mobility and Reactivity of Perovskites -- 2.5.1. Oxygen Isotope Exchange -- 2.5.2. Oxygen TPD -- 2.5.3. Theoretical Analysis of The Heats of Oxygen Adsorption and Migration -- 2.5.4. H2 TPR -- 2.5.5. CH4 TPR.

3. PEROVSKITE-FLUORITE NANOCOMPOSITES -- 3.1. Preparation and Characterization of Nanocomposites -- 3.2. Phase Composition and Structure -- 3.3. Surface Composition of Composites -- 3.4. Electronic and Oxygen Transport in Nanocomposites -- 3.4.1. Electronic Conductivity -- 3.4.2. Oxygen Isotope Exchange -- 3.4.3 Oxygen Temperature-Programmed Desorption (TPD) From Powders -- 3.4.4. Dynamics of Oxygen Desorption from Dense Samples -- 3.4.5. Temperature--Programmed Reduction -- 4. DESIGN AND TESTING OF IT SOFC CATHODES -- 4.1. Single Layer Cathodes -- 4.2. Cathodes with GDC Functional Layer -- 4.3. SOFCs with Thin Nanocomposite Functional Layers -- 5. DESIGN OF ASYMMETRIC MULTILAYER MEMBRANES BASED ON MIXED IONIC-ELECTRONIC CONDUCTING COMPOSITES -- 5.1. Preparation of Membrane -- 5.2. Membrane Reactor Testing -- 6. CONCLUSION -- ACKNOWLEDGMENTS -- REFERENCES -- Chapter 3 ON THE NATURE OF LOW-TEMPERATURE RESISTIVE PEAK IN COLOSSAL MAGNETORESISTANT MATERIALS -- ABSTRACT -- INTRODUCTION -- ELECTRONIC TRANSPORT IN MAGNETICALLY INHOMOGENEOUS MANGANITE MATERIALS -- MODEL CALCULATIONS: ELECTRIC CONDUCTIVITY OF A TWO-PHASE MANGANITE SYSTEM -- EFFECT OF MICROSTRUCTURE ON TRANSPORT PROPERTIES OF MANGANITE POLYCRYSTALS -- SELF-DOPED LANTHANUM MANGANITES AS A PHASE-SEPARATED SYSTEM: TRANSFORMATION OF TRANSPORT PROPERTIES WITH DOPING AND HYDROSTATIC COMPRESSION -- TRANSPORT AND MAGNETORESISTANCE PROPERTIES OF NANOCRYSTALLINE MANGANITE SAMPLES -- PECULIAR FEATURES OF ELECTRIC PROPERTIES OF ULTRATHIN EPITAXIAL FILMS -- ANALYSIS OF EXISTENT APPROACHES TO DESCRIBE ELECTRIC PROPERTIES OF DOPED MANGANITES -- CONCLUSION -- ACKNOWLEDGMENTS -- REFERENCES -- Chapter 4 STRUCTURAL, MAGNETIC AND ELECTRON TRANSPORT PROPERTIES OF ORDERED-DISORDERED PEROVSKITE COBALTITES -- ABSTRACT -- INTRODUCTION -- CRYSTAL STRUCTURE -- MAGNETIC AND ELECTRON TRANSPORT PROPERTIES.

I. Disordered Cobaltites -- II. Ordered Cobaltites -- CONCLUSION -- ACKNOWLEDGMENTS -- REFERENCES -- Chapter 5 ELECTRICALLY TUNABLE DIELECTRIC AND CONDUCTION PROPERTIES IN PEROVSKITE THIN FILMS -- ABSTRACT -- I. DIELECTRIC TUNABLE PROPERTIES IN PEROVSKITE THIN FILMS BASED ON (BA,SR)TIO3 -- 1. Thickness-dependent Dielectric Characteristics of Perovskite Thin Films -- 2. Approaches to Enhance the Tunability of BST Thin Films -- 2.1. Origin of Dielectric Tunability in Perovskites -- 2.2. Effects of Electric Annealing on the Tunable Properties of BST Thin Films -- 2.3. Effects of A-site Doping on the Tunable Properties -- 2.4. Effects of Bilayer Thin Films on the Tunable Properties -- 3. Conclusions -- II. RESISTIVE SWITCHING IN PEROVSKITE THIN FILMS -- 1. Resistive Switching Based on Space-charge-limited Current -- 2. Behaviors of Oxygen Vacancies Responsible for the Resistive Switching -- 3. CONCLUSIONS -- ACKNOWLEDGMENTS -- REFERENCES -- Chapter 6 MICROWAVE DIELECTRIC PROPERTIES OF CA[(LI1/3A2/3)1-XMX]O3- [A=NB, TA AND M=TI, ZR, SN] COMPLEX PEROVSKITES: A REVIEW -- ABSTRACT -- 1. INTRODUCTION -- 2. EXPERIMENTAL -- 3. CA(LI1/3A2/3)O3- COMPLEX PEROVSKITE [A=NB, TA] -- 1. 3.1. Optimization of Calcination and Sintering Temperatures -- 3.2. Phase Analysis of Ca[(Li1/3A2/3)1-xMx]O3- [A=Nb, Ta and M=Ti, Zr, Sn] Ceramics -- 3.3. Microwave Dielectric Properties of Ca[(Li1/3A2/3)1-xMx]O3- [A=Nb, Ta and M=Ti, Zr, Sn] Ceramics -- 4. LOW TEMPERATURE CO-FIRED CERAMICS -- 4.1. Effect of Glass Addition in Ca[(Li1/3A2/3)1-xTix]O3- [A=Nb, Ta] -- 4.1.2. Effect of Borosilicate Glasses in Ca[(Li1/3A2/3)1-xTix]O3- [A=Nb, Ta] Ceramics -- 4.1.3. Shrinkage Characteristics -- 4.1.4. Densification -- 4.1.5. Phase Analysis -- 4.1.6. Microstructure Analysis -- 4.1.7. Microwave Dielectric Properties -- 5. CONCLUSIONS -- ACKNOWLEDGMENT -- REFERENCES.

Chapter 7 PEROVSKITE-TYPE OXIDES: SYNTHESIS AND APPLICATION IN CATALYSIS -- ABSTRACT -- 1. INTRODUCTION -- 2. SYNTHESIS METHODS FOR PEROVSKITE OXIDES -- A. Solid-state Method -- B. Wet Method -- B1. Coprecipitation -- B2. Citrate Method -- B3. Microemulsions Method -- B4. Combustion Method -- B5. Freeze-drying -- B6. Template Method -- 3. APPLICATION IN CATALYSIS -- A. Photocatalysis for Water Splitting -- B. Electrocatalysis -- C. Heterogeneous Catalysis -- C1. Liquid Phase Reaction -- C2. Gas Phase Reaction -- C2.1. CO Oxidation -- C2.2. NO Removal -- 4. CONCLUSION AND PERSPECTIVES -- REFERENCES -- Chapter 8 MECHANISM OF FORMATION OF PEROVSKITE-TYPE LAYERED OXIDES -- ABSTRACT -- 1. INTRODUCTION -- 2. PEROVSKITE-TYPE LAYERED PHASES -- 3. FORMATION OF THE DOUBLE-PEROVSKITE LAYERED ALUMINATES LN2SRAL2O7 (LN=LA - HO) -- 4. FORMATION OF THE DOUBLE-PEROVSKITE LAYERED MANGANITES LN2SRMN2O7 (LN=LA, ND, GD). -- 4. FORMATION OF THE DOUBLE-PEROVSKITE LAYERED LN2SRFE2O7 (LN=LA, ND, GD) -- 5. FORMATION OF THE DOUBLE-PEROVSKITE LAYERED BI3TINBO9 -- 6. FORMATION OF THE RUDDLESDEN-POPPER PHASES NANDTIO4 AND NA2ND2TI3O10 -- 7. CONCLUSION -- ACKNOWLEDGMENT -- REFERENCES -- Chapter 9 SOME THEORETICAL ASPECTS OF MAGNETIC STRUCTURE, SPIN EXCITATIONS AND MAGNETIZATION OF MANGANITES -- ABSTRACT -- INTRODUCTION -- PART 1. MAGNETIC STRUCTURES -- 1.1. Anderson-Hasegawa Molecule and Effective Spin Hamiltonian -- 1.2. Hamiltonian for the Crystal -- 1.3. Ground State Energies of Different Magnetic Configurations -- 1.4. Comparison with Experiment -- 1.5. Some Discussions -- PART 2. SPIN-WAVE EXCITATIONS -- 2.1. Some General Formulas. Ferromagnets -- 2.2. Comparison with Experiment. Ferromagnets -- 2.3. Some General Formulas. Antiferromagnet -- 2.4. Comparison with Experiment. Antiferromagnet -- 2.5. Discussion of Results -- PART 3. MAGNETIZATION.

3.1. The Near Ordering Temperatures -- Z -- B-structure -- A- Structure -- C-structure -- G-structure -- 3.2. The Wide Temperature Range -- 3.3. Some Notes -- CONCLUSION -- ACKNOWLEDGMENTS -- REFERENCES -- Chapter 10 CORRELATIONS BETWEEN THE STRUCTURE OF ORDERED SOLID SOLUTIONS AND PARAMETERS OF PAIR INTERACTIONS IN PEROVSKITES -- ABSTRACT -- 1. INTRODUCTION -- 2. INTERPRETATION OF X-RAY DIFFRACTION PATTERNS OF COMPLEX OXIDES WITH A PEROVSKITE-TYPE STRUCTURE -- 2.1. Theoretical Aspects -- 2.2. Interpretation of 32/12/1ONbPbFe X-ray Diffraction Pattern -- 3. THEORY OF ORDERING IN COMPLEX OPS -- 3.1. General Aspects -- 3.1.1. Conditions for the Stabilization of Ordered State Observed in 33/23/1ONbPbMg -- 3.1.2. Conditions for the Stabilization of Ordered State Observed in 3/1)(ONbMgBa -- 3.1.3. Conditions for the Stabilization of Ordered State Observed in 33/23/1CuOBaY -- 3.1.4. Conditions for the Stabilization of the Suggested Order in Arrangement of Cations in A-sublattice in 33/23/1MnOLaCa -- 4. CONSIDERATION OF RESULTS -- 4.1. Pair Interactions and Coordinate Spheres -- 4.2. ORDERING CONDITIONS IN A BULK CRYSTAL -- 4.3. ORDERING IN A NEAR-SURFACE LAYER OF A CRYSTAL -- REFERENCES -- Chapter 11 ABX3-TYPE OXIDES AND HALIDES: THEIR STRUCTURE AND PHYSICAL PROPERTIES -- ABSTRACT -- 1. INTRODUCTION -- Synthesis -- Structure -- 2. MODELS FOR THE ANALYSIS OF PROPERTIES OF PEROVSKITES (ABX3) -- 2.1. Structural Properties -- 2.2. Mechanical Properties -- 2.3. Miscellaneous Properties and Applications -- Applications -- CONCLUDING REMARKS -- ACKNOWLEDGMENTS -- REFERENCES -- Chapter 12 FERROELECTRIC PBTIO3: FROM A SINGLE-DOMAIN STATE TO COMPOSITE COMPONENTS -- ABSTRACT -- INTRODUCTION -- 0-3 FERROELECTRIC CERAMIC / POLYMER COMPOSITE AND ITS PERFORMANCE -- Modelling of Effective Electromechanical Properties.

Effective Electromechanical Properties: Volume-fraction and Aspect-ratio Dependences.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: