Cover image for The Physics and Engineering of Compact Quantum Dot-Based Lasers for Biophotonics.
The Physics and Engineering of Compact Quantum Dot-Based Lasers for Biophotonics.
Title:
The Physics and Engineering of Compact Quantum Dot-Based Lasers for Biophotonics.
Author:
Rafailov, Edik U.
ISBN:
9783527665617
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (266 pages)
Contents:
The Physics and Engineering of Compact Quantum Dot-based Lasers for Biophotonics -- Contents -- Foreword -- List of Contributors -- Chapter Introduction -- References -- Chapter 1 Quantum Dot Technologies -- 1.1 Motivation for Development of Quantum Dots -- 1.2 Gain and Quantum Confinement in a Semiconductor Laser -- 1.2.1 Top-Down Approach -- 1.2.2 Bottom-Up Approach -- 1.3 Self-Assembled Quantum Dot Technology -- 1.3.1 Molecular Beam Epitaxy -- 1.3.2 Growth Modes -- 1.3.3 Quantum Dot Growth Dynamics -- 1.3.3.1 The Interaction of the Quantum Dot and the Wetting Layer -- 1.3.3.2 The Interaction of the Quantum Dot with Underlying Layers and Capping Layers -- 1.3.3.3 Growth Interruption -- 1.3.3.4 Arsenic Pressure -- 1.3.3.5 Growth Temperature -- 1.3.3.6 Growth Rate and Material Coverage -- 1.3.4 Quantum Dot Growth Thermodynamic Processes -- 1.4 Physics and Device Properties of S-K Quantum Dots -- 1.4.1 Temperature Insensitivity -- 1.4.2 Low Threshold Current Density -- 1.4.3 Material Gain and Modal Gain -- 1.4.4 Broad Spectral Bandwidth Devices and Spectral Coverage -- 1.4.5 Ultrafast Gain Recovery -- 1.5 Extension of Emission Wavelength of GaAs-Based Quantum Dots -- 1.5.1 Short-Wavelength Quantum Dot Light Emission -- 1.5.1.1 InP/GaInP Quantum Dots -- 1.5.1.2 Type II InAlAs/AlGaAs Quantum Dots -- 1.5.2 Long-Wavelength QD Light Emission -- 1.5.2.1 Low Growth Temperature InAs/GaAs Quantum Dots -- 1.5.2.2 InAs QDs Grown on an InGaAs Metamorphic Layer -- 1.5.2.3 InGaAsSb Capped InAs/GaAs Quantum Dots and InGaNAs Capped InAs/GaAs Quantum Dots -- 1.5.2.4 Bilayer InAs/GaAs QD Structures -- 1.5.2.5 Asymmetric Dot in WELL QD Structure -- 1.6 Future Prospects -- Acknowledgments -- References -- Chapter 2 Ultra-Short-Pulse QD Edge-Emitting Lasers -- 2.1 Introduction -- 2.2 Simulations.

2.3 Broadly Tunable Frequency-Doubled EC-QD Lasers -- 2.4 Two-Section Monolithic Mode-Locked QD Lasers -- 2.4.1 Simultaneous GS and ES ML -- 2.4.2 QD Absorber Resistor-SEED Functionality -- 2.4.3 Pulse Width Narrowing due to GS Splitting -- 2.5 Tapered Monolithic Mode-Locked QD Lasers -- 2.5.1 High-Peak Power and Subpicosecond Pulse Generation -- 2.5.2 Suppression of Pulse Train Instabilities of Tapered QD-MLLs -- 2.6 QD-SOAs -- 2.6.1 Straight-Waveguide QD-SOAs -- 2.6.2 Tapered-Waveguide QD-SOAs -- 2.6.3 QD-SOA Noise -- 2.7 Pulsed EC-QD Lasers with Tapered QD-SOA -- 2.7.1 EC-MLQDL -- 2.7.2 EC-MLQDL with Postamplification by Tapered QD-SOA -- 2.7.3 Wavelength-Tunable EC-MLQDL with Tapered QD-SOA -- 2.8 Conclusion -- Acknowledgments -- References -- Chapter 3 Quantum Dot Semiconductor Disk Lasers -- 3.1 Introduction -- 3.2 General Concept of Semiconductor Disk Lasers -- 3.3 Toward Operation at the 1-1.3 μm Spectral Range -- 3.4 Quantum Dots Growth and Characterization -- 3.5 Quantum Dots for Laser Application: From Edge Emitters to Disk Lasers -- 3.6 Details of the Quantum Dot Gain Media for Disk Cavity -- 3.6.1 1040 nm Disk Gain Design -- 3.6.2 1180 nm Disk Gain Structure -- 3.6.3 1260 nm Disk Gain Structure -- 3.6.4 Gain Medium Characterization at the Wafer Level -- 3.7 Disk Laser Performance -- 3.7.1 Gain Chip Assembly and Thermal Management -- 3.7.2 1040 nm InGaAs Dot Disk Laser -- 3.7.3 1180 nm Disk Laser -- 3.7.4 1260 nm Quantum Dot Disk Laser -- 3.8 Tunable Quantum Dot Semiconductor Disk Laser -- 3.9 Second Harmonic Generation with Quantum Dot Disk Laser Cavity -- 3.9.1 Experimental Results -- 3.10 Disk Laser with Flip-Chip Design of the Gain Medium -- 3.10.1 Gain Structure Description -- 3.10.2 Experimental Results -- 3.11 Conclusions -- Acknowledgments -- References.

Chapter 4 Semiconductor Quantum-Dot Saturable Absorber Mirrors for Mode-Locking Solid-State Lasers -- 4.1 Scope of the Chapter -- 4.2 Introduction -- 4.3 Quantum-Well Saturable Absorbers: Overview -- 4.4 Quantum-Dot Saturable Absorbers: Basic Principles and Fabrication Technologies -- 4.5 Quantum-Dot Saturable Absorbers for Mode-Locking of Solid-State Lasers at 1 μm -- 4.5.1 QD-SAM Design and Characterization -- 4.5.2 QD-SAM Mode-Locked Yb:KYW Lasers -- 4.6 p-i-n Junction QD SESAMs and Their Applications -- 4.6.1 Cr:forsterite Laser Mode-Locked Using p-i-n QD SESAM -- 4.6.2 Nonlinear Reflectivity and Absorption Recovery Dynamics in p-i-n QD-SAM -- 4.7 InAs/GaAs QD-SAM for 10 GHz Repetition Rate Mode-Locked Laser at 1.55 μm -- 4.8 InP Quantum Dot Saturable Absorbers for Mode-Locking High-Repetition Rate Ti:sapphire Lasers -- 4.9 Conclusions -- Acknowledgments -- References -- Chapter 5 QD Ultrafast and Continuous Wavelength Laser Diodes for Applications in Biology and Medicine -- 5.1 Compact Laser Systems for Nonlinear Imaging Applications -- 5.1.1 Introduction -- 5.1.1.1 The Multimodal Microscope -- 5.1.2 Microscopy Workstation Preparation for Infrared Wavelengths -- 5.1.2.1 Long-Term Exposure Effects on Living Samples at 1550 nm -- 5.1.3 Quantum-Dot-Based Optically Pumped Vertical Extended Cavity Surface-Emitting Lasers for Nonlinear Imaging -- 5.1.3.1 The Compact Femtosecond Semiconductor Disk Laser System -- 5.1.3.2 Nonlinear Imaging Tests -- 5.1.4 Future Prospects: Edge-Emitting Laser Prototypes for Nonlinear Imaging -- 5.1.4.1 Ultra-Short Pulsed Semiconductor Edge-Emitting Lasers -- 5.1.5 Conclusions -- 5.2 QD Devices and Their Application in Optical Coherence Tomography -- 5.2.1 Overview of Optical Coherence Tomography -- 5.2.2 SLD Devices -- 5.2.3 Broadband Gain Material.

5.2.3.1 Use of QDs SLDs for Time-Domain OCT -- 5.2.4 Swept Lasers -- 5.2.5 The QD Swept Source Laser for OCT -- 5.2.6 Summary and Future Outlook -- 5.3 Infrared QD Laser Application in Cancer Photodynamic Therapy: Killing Tumor Cells without Photosensitizers -- 5.3.1 Introduction -- 5.3.2 Singlet Oxygen in Organic Solution -- 5.3.3 Laser-Induced 1O2 Production in Living Cells -- 5.3.4 Cytosolic Free Calcium Level and Ion Channel Activity under Laser Pulse -- 5.3.5 Laser-Triggered Cancer Cell Death -- 5.3.6 Conclusions and Future Perspectives -- Acknowledgments -- References -- Chapter 6 Conclusion and Future Perspectives -- Color Plates -- Index.
Abstract:
Written by a team of European experts in the field, this book addresses the physics, the principles, the engineering methods, and the latest developments of efficient and compact ultrafast lasers based on novel quantum-dot structures and devices, as well as their applications in biophotonics. Recommended reading for physicists, engineers, students and lecturers in the fields of photonics, optics, laser physics, optoelectronics, and biophotonics.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: