Cover image for Ultrashort Laser Pulse Phenomena : fundamentals, techniques, ana applications on a femtosecond.
Ultrashort Laser Pulse Phenomena : fundamentals, techniques, ana applications on a femtosecond.
Title:
Ultrashort Laser Pulse Phenomena : fundamentals, techniques, ana applications on a femtosecond.
Author:
Diels, Jean-Claude.
ISBN:
9780080466408
Personal Author:
Edition:
2nd ed.
Physical Description:
1 online resource (675 pages)
Series:
Optics and photonics
Contents:
Front cover -- Title page -- Copyright page -- Table of contents -- Preface -- Preface to the First Edition -- Why Ultrashort Pulse Phenomena? -- BIBLIOGRAPHY -- 1 Fundamentals -- 1.1. CHARACTERISTICS OF FEMTOSECOND LIGHT PULSES -- 1.1.1. Complex Representation of the Electric Field -- 1.1.2. Power, Energy, and Related Quantities -- 1.1.3. Pulse Duration and Spectral Width -- 1.1.4. Wigner Distribution, Second-Order Moments, Uncertainty Relations -- 1.2. PULSE PROPAGATION -- 1.2.1. The Reduced Wave Equation -- 1.2.2. Retarded Frame of Reference -- 1.2.3. Dispersion -- 1.2.4. Gaussian Pulse Propagation -- 1.2.5. Complex Dielectric Constant -- 1.3. INTERACTION OF LIGHT PULSES WITH LINEAR OPTICAL ELEMENTS -- 1.4. GENERATION OF PHASE MODULATION -- 1.5. BEAM PROPAGATION -- 1.5.1. General -- 1.5.2. Analogy between Pulse and Beam Propagation -- 1.5.3. Analogy between Spatial and Temporal Imaging -- 1.6. NUMERICAL MODELING OF PULSE PROPAGATION -- 1.7. SPACE-TIME EFFECTS -- 1.8. PROBLEMS -- BIBLIOGRAPHY -- 2 Femtosecond Optics -- 2.1. INTRODUCTION -- 2.2. WHITE LIGHT AND SHORT PULSE INTERFEROMETRY -- 2.3. DISPERSION OF INTERFEROMETRIC STRUCTURES -- 2.3.1. Mirror Dispersion -- 2.3.2. Fabry-Perot and Gires-Tournois Interferometer -- 2.3.3. Chirped Mirrors -- 2.4. FOCUSING ELEMENTS -- 2.4.1. Singlet Lenses -- 2.4.2. Space-Time Distribution of the Pulse Intensity at the Focus of a Lens -- 2.4.3. Achromatic Doublets -- 2.4.4. Focusing Mirrors -- 2.5. ELEMENTS WITH ANGULAR DISPERSION -- 2.5.1. Introduction -- 2.5.2. Tilting of Pulse Fronts -- 2.5.3. GVD through Angular Dispersion-General -- 2.5.4. GVD of a Cavity Containing a Single Prism -- 2.5.5. Group Velocity Control with Pairs of Prisms -- 2.5.6. GVD Introduced by Gratings -- 2.5.7. Grating Pairs for Pulse Compressors -- 2.5.8. Combination of Focusing and Angular Dispersive Elements.

2.6. WAVE-OPTICAL DESCRIPTION OF ANGULAR DISPERSIVE ELEMENTS -- 2.7. OPTICAL MATRICES FOR DISPERSIVE SYSTEMS -- 2.8. NUMERICAL APPROACHES -- 2.9. PROBLEMS -- BIBLIOGRAPHY -- 3 Light-Matter Interaction -- 3.1. DENSITY MATRIX EQUATIONS -- 3.2. PULSE SHAPING WITH RESONANT PARTICLES -- 3.2.1. General -- 3.2.2. Pulses Much Longer Than the Phase Relaxation Time (τp >> T2) -- 3.2.3. Phase Modulation by Quasi-Resonant Interactions -- 3.2.4 Pulse Durations Comparable with or Longer Than the Phase Relaxation Time (τp ≥ T2) -- 3.3. NONLINEAR, NONRESONANT OPTICAL PROCESSES -- 3.3.1. General -- 3.3.2. Noninstantaneous Response -- 3.3.3. Pulse Propagation -- 3.4. SECOND HARMONIC GENERATION (SHG) -- 3.4.1. Type I Second Harmonic Generation -- 3.4.2. Second Harmonic Type II: Equations for Arbitrary Phase Mismatch and Conversion Efficiencies -- 3.4.3. Pulse Shaping in Second Harmonic Generation (Type II) -- 3.4.4. Group Velocity Control in SHG through Pulse Front Tilt -- 3.5. OPTICAL PARAMETRIC INTERACTION -- 3.5.1. Coupled Field Equations -- 3.5.2. Synchronous Pumping -- 3.5.3. Chirp Amplification -- 3.6. THIRD-ORDER SUSCEPTIBILITY -- 3.6.1. Fundamentals -- 3.6.2. Short Samples with Instantaneous Response -- 3.6.3. Short Samples and Noninstantaneous Response -- 3.6.4. Counter-Propagating Pulses and Third-Order Susceptibility -- 3.7. CONTINUUM GENERATION -- 3.8. SELF-FOCUSING -- 3.8.1. Critical Power -- 3.8.2. The Nonlinear Schrödinger Equation -- 3.9. BEAM TRAPPING AND FILAMENTS -- 3.9.1. Beam Trapping -- 3.9.2. Ultrashort Pulse Self-Focusing -- 3.10. PROBLEMS -- BIBLIOGRAPHY -- 4 Coherent Phenomena -- 4.1. FROM COHERENT TO INCOHERENT INTERACTIONS -- 4.2. COHERENT INTERACTIONS WITH TWO-LEVEL SYSTEMS -- 4.2.1. Maxwell-Bloch Equations -- 4.2.2. Rate Equations -- 4.2.3. Evolution Equations -- 4.2.4. Steady-State Pulses -- 4.3. MULTIPHOTON COHERENT INTERACTION.

4.3.1. Introduction -- 4.3.2. Multiphoton Multilevel Transitions -- 4.3.3. Simplifying a N-Level System to a Two-Level Transition -- 4.3.4. Four Photon Resonant Coherent Interaction -- 4.3.5. Miscellaneous Applications -- 4.4. PROBLEMS -- BIBLIOGRAPHY -- 5 Ultrashort Sources I: Fundamentals -- 5.1. INTRODUCTION -- 5.1.1. Superposition of Cavity Modes -- 5.1.2. Cavity Modes and Modes of a Mode-Locked Laser -- 5.1.3. The "Perfect" Mode-Locked Laser -- 5.1.4. The "Common" Mode-Locked Laser -- 5.1.5. Basic Elements and Operation of a fs Laser -- 5.2. CIRCULATING PULSE MODEL -- 5.2.1. General Round-Trip Model -- 5.2.2. Continuous Model -- 5.2.3. Elements of a Numerical Treatment -- 5.2.4. Elements of an Analytical Treatment -- 5.3. EVOLUTION OF THE PULSE ENERGY -- 5.3.1. Rate Equations for the Evolution of the Pulse Energy -- 5.3.2. Connection of the Model to Microscopic Parameters -- 5.4. PULSE SHAPING IN INTRACAVITY ELEMENTS -- 5.4.1. Saturation -- 5.4.2. Nonlinear Nonresonant Elements -- 5.4.3. Self-Lensing -- 5.4.4. Summary of Compression Mechanisms -- 5.4.5. Dispersion -- 5.5. CAVITIES -- 5.5.1. Cavity Modes and ABCD Matrix Analysis -- 5.5.2. Astigmatism and Its Compensation -- 5.5.3. Cavity with a Kerr Lens -- 5.6. PROBLEMS -- BIBLIOGRAPHY -- 6 Ultrashort Sources II: Examples -- 6.1. SYNCHRONOUS MODE-LOCKING -- 6.2. HYBRID MODE-LOCKING -- 6.3. ADDITIVE PULSE MODE-LOCKING -- 6.3.1. Generalities -- 6.3.2. Analysis of APML -- 6.4. MODE-LOCKING BASED ON NONRESONANT NONLINEARITY -- 6.4.1. Nonlinear Mirror -- 6.4.2. Polarization Rotation -- 6.5. NEGATIVE FEEDBACK -- 6.6. SEMICONDUCTOR-BASED SATURABLE ABSORBERS -- 6.7. SOLID-STATE LASERS -- 6.7.1. Generalities -- 6.7.2. Ti:sapphire Laser -- 6.7.3. Cr:LiSAF, Cr:LiGAF, Cr:LiSGAF, and Alexandrite -- 6.7.4. Cr:Forsterite and Cr:Cunyite Lasers -- 6.7.5. YAG Lasers -- 6.7.6. Nd: YVO4 and Nd: YLF.

6.8. SEMICONDUCTOR AND DYE LASERS -- 6.8.1. Dye Lasers -- 6.8.2. Semiconductor Lasers -- 6.9. FIBER LASERS -- 6.9.1. Introduction -- 6.9.2. Raman Soliton Fiber Lasers -- 6.9.3. Doped Fiber Lasers -- 6.9.4. Mode-Locking through Polarization Rotation -- 6.9.5. Figure-Eight Laser -- BIBLIOGRAPHY -- 7 Femtosecond Pulse Amplification -- 7.1. INTRODUCTION -- 7.2. FUNDAMENTALS -- 7.2.1. Gain Factor and Saturation -- 7.2.2. Shaping in Amplifiers -- 7.2.3. Amplified Spontaneous Emission (ASE) -- 7.3. NONLINEAR REFRACTIVE INDEX EFFECTS -- 7.3.1. General -- 7.3.2. Self-Focusing -- 7.3.3. Thermal Noise -- 7.3.4. Combined Pulse Amplification and Chirping -- 7.4. CHIRPED PULSE AMPLIFICATION (CPA) -- 7.5. AMPLIFIER DESIGN -- 7.5.1. Gain Media and Pump Pulses -- 7.5.2. Amplifier Configurations -- 7.5.3. Single-Stage, Multipass Amplifiers -- 7.5.4. Regenerative Amplifiers -- 7.5.5. Traveling Wave Amplification -- 7.6. OPTICAL PARAMETRIC CHIRPED PULSE AMPLIFICATION (OPCPA) -- 7.7. PROBLEMS -- BIBLIOGRAPHY -- 8 Pulse Shaping -- 8.1. PULSE COMPRESSION -- 8.1.1. General -- 8.1.2. The Fiber Compressor -- 8.1.3. Pulse Compression Using Bulk Materials -- 8.2. SHAPING THROUGH SPECTRAL FILTERING -- 8.3. PROBLEMS -- BIBLIOGRAPHY -- 9 Diagnostic Techniques -- 9.1. INTENSITY CORRELATIONS -- 9.1.1. General Properties -- 9.1.2. The Intensity Autocorrelation -- 9.1.3. Intensity Correlations of Higher Order -- 9.2. INTERFEROMETRIC CORRELATIONS -- 9.2.1. General Expression -- 9.2.2. Interferometric Autocorrelation -- 9.3. MEASUREMENT TECHNIQUES -- 9.3.1. Nonlinear Optical Processes for Measuring Femtosecond Pulse Correlations -- 9.3.2. Recurrent Signals -- 9.3.3. Single Shot Measurements -- 9.4. PULSE AMPLITUDE AND PHASE RECONSTRUCTION -- 9.4.1. Introduction -- 9.4.2. Methods for Full-Field Characterization of Ultrashort Light Pulses -- 9.4.3. Retrieval from Correlation and Spectrum.

9.4.4. Frequency Resolved Optical Gating (FROG) -- 9.4.5. Spectral Phase Interferometry for Direct Electric Field Reconstruction (SPIDER) -- 9.5. PROBLEMS -- BIBLIOGRAPHY -- 10 Measurement Techniques of Femtosecond Spectroscopy -- 10.1. INTRODUCTION -- 10.2. DATA DECONVOLUTIONS -- 10.3. BEAM GEOMETRY AND TEMPORAL RESOLUTION -- 10.4. TRANSIENT ABSORPTION SPECTROSCOPY -- 10.5. TRANSIENT POLARIZATION ROTATION -- 10.6. TRANSIENT GRATING TECHNIQUES -- 10.6.1. General Technique -- 10.6.2. Degenerate Four Wave Mixing (DFWM) -- 10.7. FEMTOSECOND RESOLVED FLUORESCENCE -- 10.8. PHOTON ECHOES -- 10.9. ZERO AREA PULSE PROPAGATION -- 10.10. IMPULSIVE STIMULATED RAMAN SCATTERING -- 10.10.1. General Description -- 10.10.2. Detection -- 10.10.3. Theoretical Framework -- 10.10.4. Single Pulse Shaping Versus Mode- Locked Train -- 10.11. SELF-ACTION EXPERIMENTS -- 10.12. PROBLEMS -- BIBLIOGRAPHY -- 11 Examples of Ultrafast Processes in Matter -- 11.1. INTRODUCTION -- 11.2. ULTRAFAST TRANSIENTS IN ATOMS -- 11.2.1. The Classical Limit of the Quantum Mechanical Atom -- 11.2.2. The Radial Wave Packet -- 11.2.3. The Angularly Localized Wave Packet -- 11.3. ULTRAFAST PROCESSES IN MOLECULES -- 11.3.1. Observation of Molecular Vibrations -- 11.3.2. Chemical Reactions -- 11.3.3. Molecules in Solution -- 11.4. ULTRAFAST PROCESSES IN SOLID-STATE MATERIALS -- 11.4.1. Excitation Across the Band Gap -- 11.4.2. Excitons -- 11.4.3. Intraband Relaxation -- 11.4.4. Phonon Dynamics -- 11.4.5. Laser-Induced Surface Disordering -- 11.5. PRIMARY STEPS IN PHOTO-BIOLOGICAL REACTIONS -- 11.5.1. Femtosecond Isomerization of Rhodopsin -- 11.5.2. Photosynthesis -- BIBLIOGRAPHY -- 12 Generation of Extreme Wavelengths -- 12.1. GENERATION OF TERAHERTZ (THz) RADIATION -- 12.2. GENERATION OF ULTRAFAST X-RAY PULSES -- 12.2.1. Incoherent Bursts of X-Rays.

12.2.2. High Harmonics (HH) and Attosecond Pulse Generation.
Abstract:
Ultrashort Laser Pulse Phenomena, 2e serves as an introduction to the phenomena of ultra short laser pulses and describes how this technology can be used to examine problems in areas such as electromagnetism, optics, and quantum mechanics. Ultrashort Laser Pulse Phenomena combines theoretical backgrounds and experimental techniques and will serve as a manual on designing and constructing femtosecond ("faster than electronics") systems or experiments from scratch. Beyond the simple optical system, the various sources of ultrashort pulses are presented, again with emphasis on the basic concepts and how they apply to the design of particular sources (dye lasers, solid state lasers, semiconductor lasers, fiber lasers, and sources based on frequency conversion). *Provides an easy to follow guide through "faster than electronics" probing and detection methods *THE manual on designing and constructing femtosecond systems and experiments *Discusses essential technology for applications in micro-machining, femtochemistry, and medical imaging.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: