Cover image for High Temperature Performance of Polymer Composites.
High Temperature Performance of Polymer Composites.
Title:
High Temperature Performance of Polymer Composites.
Author:
Bai, Yu.
ISBN:
9783527654178
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (247 pages)
Contents:
High Temperature Performance of Polymer Composites -- Contents -- Preface -- Chapter 1 Introduction -- 1.1 Background -- 1.2 FRP Materials and Processing -- 1.2.1 FRP Materials -- 1.2.2 Processing Technologies -- 1.3 FRP Structures -- 1.3.1 Pontresina Bridge -- 1.3.2 Eyecatcher Building -- 1.3.3 Novartis Main Gate Building -- 1.4 Structural Fire Safety -- 1.4.1 Possible Fire Threats -- 1.4.2 Building Fire Standards -- 1.5 Summary -- References -- Chapter 2 Material States of FRP Composites under Elevated and High Temperatures -- 2.1 Introduction -- 2.2 Glass Transition -- 2.2.1 Characterization -- 2.2.2 Glass-Transition Temperature -- 2.2.3 Frequency Dependence of Glass-Transition Temperature -- 2.2.4 Heating Rate Dependence of Glass-Transition Temperature -- 2.2.5 Modeling of Glass Transition -- 2.3 Leathery-to-Rubbery Transition -- 2.4 Decomposition -- 2.4.1 Characterization -- 2.4.2 Decomposition Temperature -- 2.4.3 Modeling of Decomposition -- 2.5 Summary -- References -- Chapter 3 Effective Properties of Material Mixtures -- 3.1 Introduction -- 3.2 Volume Fraction of Material State -- 3.2.1 General Case - n Elementary Processes -- 3.2.2 Two Processes - Glass Transition and Decomposition -- 3.3 Statistical Distribution Functions -- 3.3.1 In Cases of Two Material States -- 3.3.2 In Cases of Three Material States -- 3.4 Estimated Effective Properties -- 3.5 Summary -- References -- Chapter 4 Thermophysical Properties of FRP Composites -- 4.1 Introduction -- 4.2 Change of Mass -- 4.2.1 Decomposition Model -- 4.2.2 TGA -- 4.2.3 Estimation of Kinetic Parameters -- 4.2.3.1 Friedman Method -- 4.2.3.2 Kissinger Method -- 4.2.3.3 Ozawa Method -- 4.2.3.4 Comparison -- 4.2.4 Mass Loss -- 4.3 Thermal Conductivity -- 4.3.1 Formulation of Basic Equations -- 4.3.2 Estimation of kb and ka.

4.3.3 Comparison to Other Models -- 4.4 Specific Heat Capacity -- 4.4.1 Formulation of Basic Equations -- 4.4.2 Estimation of Cp,b and Cp,a -- 4.4.3 Decomposition Heat, Cd -- 4.4.4 Moisture Evaporation -- 4.4.5 Comparison of Modeling and Experimental Results -- 4.5 Time Dependence of Thermophysical Properties -- 4.5.1 Introduction -- 4.5.2 Influence of Heating Rates on Decomposition and Mass Transfer -- 4.5.3 Influence on Effective Specific Heat Capacity -- 4.5.4 Influence on Effective Thermal Conductivity -- 4.6 Summary -- References -- Chapter 5 Thermomechanical Properties of FRP Composites -- 5.1 Introduction -- 5.2 Elastic and Shear Modulus -- 5.2.1 Overview of Existing Models -- 5.2.2 Estimation of Kinetic Parameters -- 5.2.3 Modeling of E-Modulus -- 5.2.4 Modeling of G-Modulus -- 5.3 Effective Coefficient of Thermal Expansion -- 5.4 Strength -- 5.4.1 Shear Strength -- 5.4.2 Tensile Strength -- 5.4.3 Compressive Strength -- 5.5 Summary -- References -- Chapter 6 Thermal Responses of FRP Composites -- 6.1 Introduction -- 6.2 Full-Scale Cellular Beam Experiments -- 6.2.1 Material Details -- 6.2.2 Specimen and Instrumentation -- 6.2.3 Experimental Setup and Procedure -- 6.2.4 Experimental Observation -- 6.2.5 Thermal Response from Measurements -- 6.2.6 Discussion -- 6.3 Thermal Response Modeling of Beam Experiments -- 6.3.1 Modeling Assumptions and Simplification -- 6.3.2 Thermal Responses Modeling -- 6.3.3 Results and Discussion (Noncooled Specimen SLC03) -- 6.3.4 Results and Discussion (Liquid-Cooled Specimen SLC02) -- 6.4 Full-Scale Cellular Column Experiments -- 6.4.1 Material and Specimens -- 6.4.2 Experimental Scenarios and Setup -- 6.4.3 Instrumentation -- 6.4.4 Experimental Observation -- 6.4.5 Thermal Responses from Measurements -- 6.5 Thermal Response Modeling of Column Experiments -- 6.6 Summary -- References.

Chapter 7 Mechanical Responses of FRP Composites -- 7.1 Introduction -- 7.2 Full-Scale Cellular Beam Experiments -- 7.3 Mechanical Response Modeling of Beam Experiments -- 7.3.1 Modeling of Thermal Responses -- 7.3.2 Modeling of Mechanical Properties -- 7.3.3 Modeling of Elastic Responses -- 7.3.4 Model Extension: Effects of Thermal Expansion -- 7.3.5 Discussion of Deformation Modeling -- 7.3.6 Failure Analysis -- 7.4 Full-Scale Cellular Column Experiments -- 7.5 Mechanical Response Modeling of Column Experiments -- 7.5.1 Modeling of Modulus Degradation -- 7.5.2 Modeling of Time-Dependent Euler Buckling Load -- 7.5.3 Modeling of Time-Dependent Lateral Deformation -- 7.5.4 Time-to-Failure Prediction and Damage Location -- 7.6 Axial Compression Experiments on Compact Specimens -- 7.6.1 Materials and Specimens -- 7.6.2 Thermal Response Experiments -- 7.6.3 Structural Endurance Experiments -- 7.6.4 Results of Thermal Response Experiments -- 7.6.5 Results of Structural Endurance Experiments (MN1 and MN2) -- 7.6.6 Results of Structural Endurance Experiments (MC1 and MC2) -- 7.6.7 Results of Structural Endurance Experiments (MC3 and MC4) -- 7.7 Modeling of Compression Experiments on Compact Specimens -- 7.7.1 Temperature Responses -- 7.7.2 Strength Degradation -- 7.7.3 Time-to-Failure -- 7.8 Axial Compression Experiments on Slender Specimens -- 7.8.1 Materials and Specimens -- 7.8.2 Dynamic Mechanical Analysis -- 7.8.3 Axial Compression Experiments -- 7.8.4 DMA Results -- 7.8.5 Temperature Response Results -- 7.8.6 Load-Displacement Responses -- 7.8.7 Buckling Load -- 7.8.8 Temperature-Dependent Compressive and Bending Stiffness -- 7.8.9 Failure Modes -- 7.9 Modeling of Compression Experiments on Slender Specimens -- 7.9.1 Temperature-Dependent E-Modulus -- 7.9.2 Temperature-Dependent Buckling Load.

7.9.3 Temperature-Dependent Nondimensional Slenderness -- 7.9.4 Post-Buckling Delamination Analysis -- 7.9.5 Kink-Band Analysis -- 7.10 Summary -- References -- Chapter 8 Post-Fire Behavior of FRP Composites -- 8.1 Introduction -- 8.2 Post-Fire Behavior of FRP Beams -- 8.2.1 Pre-Fire, Fire Exposure, and Post-Fire Load-Deflection Responses -- 8.2.2 Pre-Fire, Fire Exposure, and Post-Fire Stiffness -- 8.2.3 E-Modulus Recovery Quantified by DMA Tests -- 8.3 Post-Fire Modeling of FRP Beams -- 8.3.1 Temperature Gradient-Based Modeling -- 8.3.2 RRC-Based Model -- 8.3.3 Proposed Model Considering Modulus Recovery -- 8.3.4 Comparison -- 8.4 Post-Fire Behavior of FRP Columns -- 8.4.1 Experimental Investigation -- 8.4.2 Experimental Results -- 8.5 Post-Fire Modeling of FRP Columns -- 8.5.1 Post-Fire Stiffness -- 8.5.2 Post-Fire Euler Buckling Load -- 8.5.3 Second-Order Deformation -- 8.5.4 Post-Fire Ultimate Load -- 8.6 Comparison to Post-Fire Beam Experiments -- 8.7 Summary -- References -- Chapter 9 Fire Protection Practices for FRP Components -- 9.1 Introduction -- 9.2 Passive Fire Protection -- 9.2.1 Fire Retardants -- 9.2.2 Nanocomposites -- 9.2.3 Inherently Fire Retardant Resins (Phenolic Resins) -- 9.2.4 Intumescent Coatings and Other Surface Protections -- 9.3 Active Fire Protection -- 9.3.1 Sprinkler Systems -- 9.3.2 Internal Liquid Cooling -- 9.4 Passive Fire Protection Applications with FRP Components -- 9.4.1 Calcium Silicate Board -- 9.4.2 Cementitious Mortar -- 9.4.3 Intumescent Coating -- 9.4.4 Fire Resistant Gypsum Plasterboard -- 9.5 Active Fire Protection Applications with FRP Components -- 9.6 Summary -- References -- Index.
Abstract:
The authors explain the changes in the thermophysical and thermomechanical properties of polymer composites under elevated temperatures and fire conditions. Using microscale physical and chemical concepts they allow researchers to find reliable solutions to their engineering needs on the macroscale. In a unique combination of experimental results and quantitative models, a framework is developed to realistically predict the behavior of a variety of polymer composite materials over a wide range of thermal and mechanical loads. In addition, the authors treat extreme fire scenarios up to more than 1000?C for two hours, presenting heat-protection methods to improve the fire resistance of composite materials and full-scale structural members, and discuss their performance after fire exposure. Thanks to the microscopic approach, the developed models are valid for a variety of polymer composites and structural members, making this work applicable to a wide audience, including materials scientists, polymer chemists, engineering scientists in industry, civil engineers, mechanical engineers, and those working in the industry of civil infrastructure.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: