Cover image for Fabrication of transparent polymer nanocomposites containing pmma-grafted CeO2 particles
Fabrication of transparent polymer nanocomposites containing pmma-grafted CeO2 particles
Title:
Fabrication of transparent polymer nanocomposites containing pmma-grafted CeO2 particles
Author:
Parlak, Onur.
Personal Author:
Publication Information:
[s.l.]: [s.n.], 2011.
Physical Description:
viii, 33 leaves.: ill. + 1 computer laser optical disc.
Abstract:
The composite materials prepared by transparent polymer and nanosized particles possess promising future in optical design and applications since their controllable optical properties. In this study, transparent/translucent composite films based on polystyrene (PS) and poly(methyl methacrylate) (PMMA)-grafted CeO2 nanoparticles were prepared. CeO2 nanoparticles were precipitated from Ce(NO3)3·6H2O and urea in dimethyl formamide at 120°C. The surface of the nanoparticles was modified with a polymerizable surfactant, 3-methacyloxypropyltrimethoxy silane (MPS) in situ at 0°C. The size of the particles was fixed to 18 nm in diameter. The particles were dispersed into a mixture of MMA:toluene solution. The free radical solution polymerization was carried out in situ at 60°C using benzoyl peroxide (BPO) as initiator. A PMMA layer is formed around CeO2 nanoparticles. The thickness of the shell ranged from 9 to 84 nm was controlled by the amount of BPO using 6 and 0.5 wt %, respectively with respect to monomer. The layer thickness was found to be inversely proportional with the amount of initiator. The resulting PMMA-grafted CeO2 particles were blended with PS in tetrahydrofuran and the solution was spin-coat on a glass slide. CeO2 content in the composite films was fixed to 5.5 wt %. The transmission of the films was examined by UV-vis spectroscopy. The transmission of the PS composite prepared by neat CeO2 particles was 71 %. It was increased to 85 % when the composite prepared with PMMA-grafted CeO2 particles whose PMMA thickness is 9 nm. We believe that the achievement in transparency is most probably due to the reduction in refractive index mismatch between CeO2 particles and PS matrix using PMMA layer at interface.
Added Author:
Added Uniform Title:
Thesis(Master)--İzmir Institute of Technology: Chemistry.

İzmir Institute of Technology: Chemistry--Thesis (Master).
Electronic Access:
Access to Electronic Version.
Holds: Copies: