Cover image for Structure Design and Degradation Mechanisms in Coastal Environments.
Structure Design and Degradation Mechanisms in Coastal Environments.
Title:
Structure Design and Degradation Mechanisms in Coastal Environments.
Author:
Ait-Mokhtar, Abdelkarim.
ISBN:
9781119006084
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (373 pages)
Contents:
Cover -- Title Page -- Copyright -- Contents -- General Introduction -- 1: Porous Construction Materials: Characterizations and Modeling -- 1.1. Definition of porous media -- 1.2. Different experimental tools for the characterization of porous materials -- 1.2.1. Measurements of porosity -- 1.2.1.1. Water porosimetry -- 1.2.1.2. Mercury intrusion porosimetry -- 1.2.2. Pore size distribution by sorption/desorption isotherms -- 1.2.3. Characterization of pore structure by NMR -- 1.2.4. Imaging techniques -- 1.2.4.1. From 2D to 3D images of the pore structure -- 1.2.4.2. Non-destructive 3D mapping by X-ray microtomography -- 1.3. Some constructed models for porous microstructures -- 1.3.1. Models based on pore size distribution -- 1.3.1.1. Statistical functions of pore size distribution -- 1.3.1.1.1. Case of monomodal porous structures -- 1.3.1.1.2. Case of polymodal porous structures -- 1.3.1.1.3. Determination of the pore-specific area -- 1.3.1.2. Models including geometrical parameters -- 1.3.2. Tridimensional-constructed microstructures -- 1.3.2.1. Vectorial approach -- 1.3.2.2. Voxel-based method -- 1.4. Some approaches for linking microstructure data to permeability -- 1.4.1. Permeability from MIP tests -- 1.4.1.1. Case of cylindrical pores -- 1.4.1.2. Case of more complex geometrical shape of pores -- 1.4.2. Permeability from constructed microstructures -- 1.4.2.1. Permeability determination from network of capillaries -- 1.4.2.2. Permeability determination by Stokes equation resolution -- 1.5. Bibliography -- 2: Moisture Transfers in Porous Construction Materials: Mechanisms and Applications -- 2.1. Introduction -- 2.2. Quantitative characteristics describing moisture in porous media -- 2.3. Phenomenon of transfer and moisture storage -- 2.3.1. Moisture diffusion -- 2.3.2. Capillarity -- 2.3.3. Infiltration.

2.3.4. Physical and chemical adsorption -- 2.4. Moisture transfer modeling: macroscopic approach -- 2.4.1. Driving potentials -- 2.4.2. Conservation equations -- 2.4.3. Moisture transfer -- 2.4.3.1. Vapor transfer -- 2.4.3.2. Liquid transfer -- 2.4.3.3. Gas transfer (dry air and vapor) -- 2.4.4. Heat transfer -- 2.4.5. Case study -- 2.4.5.1. Boundary conditions -- 2.4.5.2. Results and discussions -- 2.5. Transfer and storage properties -- 2.5.1. Vapor permeability -- 2.5.1.1. Experimental methods and references -- 2.5.1.2. Wood fibrous insulation measurements -- 2.5.2. Moisture diffusion coefficient -- 2.5.2.1. Moisture flow mechanisms -- 2.5.2.2. Method for assessment of moisture diffusion coefficient -- 2.5.2.3. Moisture diffusion coefficient of high performance concretes (HPCs) -- 2.5.2.3.1. Detailed method -- 2.5.2.3.2. Experimental setup -- 2.5.2.3.3. Materials -- 2.5.2.3.4. Results -- 2.5.3. Infiltration coefficient -- 2.5.3.1. Intrinsic and apparent infiltration coefficient -- 2.5.3.2. Tested materials -- 2.5.3.3. Experimental protocol -- 2.5.3.4. Case study results and discussion -- 2.5.4. Water vapor sorption-desorption isotherms -- 2.5.4.1. Methods for assessment of water vapor sorption-desorption isotherms -- 2.5.4.1.1. Principle -- 2.5.4.1.2. Desiccator method -- 2.5.4.1.3. DVS method -- 2.5.4.1.4. Comparison between desiccator and DVS methods -- 2.5.4.1.5. Results for construction materials -- 2.6. Effect of statistical variability of water vapor desorption used as input data -- 2.6.1. Variability of water vapor desorption -- 2.6.2. Effect of statistical variability -- 2.7. Conclusion -- 2.8. Bibliography -- 3: Homogenization Methods for Ionic Transfers in Saturated Heterogeneous Materials -- 3.1. General introduction -- 3.2. Different techniques of homogenization -- 3.2.1. Homogenization via volume averaging.

3.2.2. Periodic homogenization method -- 3.3. Periodic homogenization of ionic transfers accounting for electrical double layer -- 3.3.1. Dimensional analysis of equations -- 3.3.2. Reduction to a one scale problem -- 3.3.3. Homogenized microscopic diffusion-migration model with EDL -- 3.4. Particular case of ionic transfer without EDL -- 3.4.1. Dimensional analysis and scale problem -- 3.4.2. Homogenized macroscopic diffusion-migration model -- 3.5. Simulations and parametric study of the EDL effects -- 3.5.1. Implementation in COMSOL Multiphysics software and validation -- 3.5.2. Bidimensional elementary cells -- 3.5.2.1. Elementary cell with circular inclusion -- 3.5.2.2. More complex elementary cell -- 3.5.3. Three-dimensional elementary cells -- 3.5.3.1. Elementary cell with spherical inclusion -- 3.5.3.2. Elementary cell with a lower porosity -- 3.6. Calculations of effective chlorides diffusion coefficients using a multiscale homogenization procedure -- 3.7. Bibliography -- 4: Chloride Transport in Unsaturated Concrete -- 4.1. Introduction -- 4.2. Chloride diffusion in unsaturated case -- 4.2.1. Definition of the problem -- 4.2.2. Theoretical aspects -- 4.2.3. Ionic transport model -- 4.2.3.1. Assumptions -- 4.2.3.2. Description of the ionic diffusion mechanisms in pore scale -- 4.2.3.3. Description of the ionic diffusion mechanisms in macroscopic scale -- 4.2.3.3.1. Phase solid -- 4.2.3.3.2. Liquid phase ωls -- 4.2.4. Moisture transport model -- 4.3. Summary of the model -- 4.3.1. Output model -- 4.3.2. Constant parameters -- 4.4. Difficulties in determining some parameters of the model -- 4.5. Numerical method description -- 4.5.1. Finite volume method -- 4.5.1.1. Implicit scheme case -- 4.5.1.2. Semi-implicit scheme -- 4.5.1.3. Explicit scheme case -- 4.5.1.4. Stability and convergence of numerical schemes.

4.5.2. Numerical simulations of chloride profiles: parametrical study -- 4.5.2.1. Effect of ionic interactions -- 4.5.2.2. Effect of time exposure -- 4.5.2.3. Effect of initial saturation degree -- 4.5.2.4. Effect of the convection phenomena -- 4.5.2.5. Effect of binding isotherm -- 4.5.2.6. Effect of the adsorption isotherm and W/C ratio -- 4.5.2.7. Gas pressure effect -- 4.6. Conclusions -- 4.7. Bibliography -- 5: Construction Degradation by External Sulfate Attacks -- 5.1. Introduction -- 5.2. Mechanisms of degradation -- 5.2.1. Chemical reactions and crystallization pressure -- 5.2.2. Ingress of sulfate ions and scenario of sulfate attack -- 5.2.3. Influence of exposure conditions -- 5.2.3.1. Sulfate concentration -- 5.2.3.2. Counter ions and seawater -- 5.2.3.3. Temperature -- 5.2.3.4. Water saturation of concrete -- 5.3. Influence of concrete composition and standards requirements -- 5.3.1. Influence of binder composition -- 5.3.1.1. Cement composition -- 5.3.1.2. Fly ash -- 5.3.1.3. Slag -- 5.3.1.4. Limestone -- 5.3.1.5. Conclusion -- 5.3.2. Influence of concrete composition -- 5.3.2.1. Water/cement ratio and cement content -- 5.3.2.2. Aggregates -- 5.3.3. Standards requirements -- 5.4. Testing for sulfate resistance -- 5.4.1. Material and scale of the tests -- 5.4.2. Acceleration of the degradation process -- 5.4.2.1. pH control -- 5.4.2.2. Drying and wetting -- 5.4.3. Recommendations for testing -- 5.4.3.1. Study of degradation mechanism -- 5.4.3.2. Performance testing -- 5.5. Conclusion -- 5.6. Bibliography -- 6: Performance-Based Design of Structures and Methodology for Performance Reliability Evaluation -- 6.1. Introduction -- 6.2. Code treatment of structural reliability -- 6.2.1. Formulation of structural reliability analysis -- 6.2.2. Incorporation of reliability analysis into normative documents -- 6.2.3. Reliability targets.

6.2.4. Consistency with deterministic and semi-deterministic methods -- 6.3. Second moment transformation and simulation methods -- 6.3.1. Problem formulation -- 6.3.2. First-order reliability method -- 6.3.3. Second-order reliability method -- 6.3.4. Monte Carlo simulation for reliability analysis -- 6.3.5. Computational aspects and related software -- 6.3.6. Practical implementation aspects -- 6.4. Load and resistance modeling considering uncertainty -- 6.4.1. Uncertainty modeling -- 6.4.2. Need for resistance modeling -- 6.4.3. Measurement of resistance variables -- 6.4.4. Typical loading scenarios -- 6.5. Probabilistic assessment of limit-state violation -- 6.5.1. Reliability index and probability of failure -- 6.5.2. The concept of the design point -- 6.5.3. Sensitivity studies -- 6.5.4. Parameter importance measures -- 6.6. Component versus system reliability -- 6.6.1. Network requirements -- 6.6.2. Illustration of component and system reliability -- 6.6.3. Methods of estimating system reliability from component reliability -- 6.6.4. Practical implementation aspects -- 6.7. Time-dependent reliability -- 6.7.1. Concept of time dependence -- 6.7.2. Handling time dependency in reliability analysis -- 6.7.3. Time-dependent deterioration modeling -- 6.8. Conclusion -- 6.9. Bibliography -- 7: Coastal Protection Degradation Scenarios -- 7.1. Functions and types of coastal dikes -- 7.1.1. Main types of dikes -- 7.1.1.1. Historical fill -- 7.1.1.2. Homogeneous fill -- 7.1.1.3. Zoned fill -- 7.1.1.3.1. Original zoned fill -- 7.1.1.3.2. Zone fill following reinforcement or raising -- 7.1.1.4. Composite structure -- 7.1.1.4.1. Retaining wall (frequently on the water side) -- 7.1.1.4.2. Composite structure including rigid elements on the crest and in the core of the dike -- 7.1.2. Functional analysis of the protection system.

7.1.2.1. Definition of the system concerned by the functional analysis.
Abstract:
This book provide a series of designs, materials, characterization and modeling, that will help create safer and stronger structures in coastal areas. The authors take a look at the different materials (porous, heterogeneous, concrete…), the moisture transfers in construction materials as well as the degradation caused by external attacks and put forth systems to monitor the structures or evaluate the performance reliability as well as degradation  scenarios of coastal protection systems.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: