Cover image for Hierarchically Structured Porous Materials : From Nanoscience to Catalysis, Separation, Optics, Energy, and Life Science.
Hierarchically Structured Porous Materials : From Nanoscience to Catalysis, Separation, Optics, Energy, and Life Science.
Title:
Hierarchically Structured Porous Materials : From Nanoscience to Catalysis, Separation, Optics, Energy, and Life Science.
Author:
Sanchez, C.
ISBN:
9783527639601
Personal Author:
Edition:
2nd ed.
Physical Description:
1 online resource (679 pages)
Contents:
Hierarchically Structured Porous Materials -- Contents -- Preface -- List of Contributors -- Part I Introduction -- 1 Insights into Hierarchically Structured Porous Materials: From Nanoscience to Catalysis, Separation, Optics, Energy, and Life Science -- 1.1 Introduction -- 1.2 Synthesis Strategies to Hierarchically Structured Porous Materials -- 1.3 Emerging Applications of Hierarchically Structural Porous Materials -- 1.4 Conclusions -- Acknowledgments -- References -- 2 Hierarchy in Natural Materials -- 2.1 Natural Materials as a Source of Inspiration in Materials Science -- 2.2 Hierarchies Based on Fiber Architectures -- 2.3 Liquid Crystalline Assemblies, Clues to Mimic Hierarchical Structures -- 2.4 Mineralized Biological Tissues, Models for Hybrid Materials -- 2.5 Concluding Remarks -- References -- Part II Synthesis Strategies to Hierarchically Structured Porous Materials -- 3 Hierarchically Structured Porous Materials by Dually Micellar Templating Approach -- 3.1 Introduction -- 3.2 Nanocasting - True Liquid Crystalline Templating -- 3.2.1 Surfactants and Block Copolymer Mesophases as Templates -- 3.2.2 Ionic Liquids as Templates -- 3.3 Basics of Micellization -- 3.3.1 The Driving Force for Micellization - Hydrophobic Effect -- 3.3.2 Thermodynamics of Micelle Formation -- 3.4 Mixed Surfactant Solutions -- 3.4.1 Mixed Surfactant Systems at Higher Concentrations -- 3.5 Hierarchical Self-Assembly of Concentrated Aqueous Surfactant Mixtures - Hierarchical Mesoporous Structures -- 3.6 Conclusions -- References -- 4 Colloidal Crystal Templating Approaches to Materials with Hierarchical Porosity -- 4.1 Introduction and Historical Overview -- 4.1.1 Opals and Colloidal Crystals -- 4.1.2 Inverse Opals and Three-Dimensionally Ordered Macroporous Materials -- 4.2 The Preparation of 3DOM Materials -- 4.2.1 Monodisperse Colloidal Spheres.

4.2.2 Methods to Assemble Colloidal Crystals -- 4.2.3 Infiltration and Processing Routes -- 4.3 3DOM Materials with Intrinsic Secondary Porosity -- 4.3.1 Porosity Produced in Sol-Gel Syntheses -- 4.3.2 Textural Mesopores in Nanocrystalline Walls -- 4.3.3 Porosity in Carbon Materials -- 4.3.4 Using Nanocomposites to Generate Porosity -- 4.3.5 Porosity in 3DOM Clay Minerals -- 4.4 Hierarchical Materials from Multimodal Colloidal Crystal Templates -- 4.4.1 Templates from Combinations of Polymer Spheres with Similar Sizes -- 4.4.2 Templates from Combinations of Polymer Spheres and Small Silica Colloids -- 4.4.3 Heterostructured Colloidal Crystal Templates -- 4.5 Hierarchical Materials from Combinations of Soft and Colloidal Crystal Templating -- 4.5.1 Colloidal Crystal Templated Zeolites -- 4.5.2 Introduction to Soft Templating of Mesopores -- 4.5.3 Hierarchical Silica Structures -- 4.5.3.1 Cationic Surfactant Templates -- 4.5.3.2 Nonionic Surfactant Templates -- 4.5.3.3 Ionic-Liquid Surfactant Templates -- 4.5.4 Hierarchical Carbon-Containing Structures -- 4.5.4.1 Pure Carbon Structures -- 4.5.4.2 Carbon-Silica Composites and Derived Structures -- 4.5.5 Hierarchical Alumina Structures -- 4.5.6 Hierarchical Structures Containing Other Compounds -- 4.5.7 Structures Synthesized via Multiple Hard and Soft Templates -- 4.5.8 Formation and Structure of Mesopores Confined in Colloidal Crystals -- 4.5.9 Disassembly and Reassembly of 3DOM/m Materials -- 4.6 Hierarchical Opals and Related Structures -- 4.6.1 Monodisperse Mesoporous Silica Spheres -- 4.6.2 Self-Assembled Hierarchical Silica, Carbon, and Tin Oxide Opals -- 4.6.3 3DOM Zeolites from Hierarchical Silica Opals -- 4.6.4 Encapsulated Non-Close-Packed Hierarchical Opal -- 4.6.5 Inverse Opals as Templates for Hierarchical Opals -- 4.7 Conclusions and Outlook -- Acknowledgments -- References.

5 Templating of Macroporous or Swollen Macrostructured Polymers -- 5.1 Introduction -- 5.2 Macroporous Polymer Gels Formed in Amphiphile Solutions -- 5.3 Macroporous Starch or Agarose Gels -- 5.4 Polymer Foams -- 5.5 Polymeric Films and Fibrous Mats -- 5.6 Polymer Spheres -- 5.7 Closing Remarks -- References -- 6 Bioinspired Approach to Synthesizing Hierarchical Porous Materials -- 6.1 Introduction -- 6.2 Hierarchical Porous Materials from Biotemplates -- 6.2.1 Plant Parts as Templates -- 6.2.2 Cell and Bacteria as Templates -- 6.2.3 Saccharide as Templates -- 6.2.4 Diatomaceous Earth as Templates -- 6.2.5 Eggshell as Templates -- 6.3 Hierarchical Porous Materials from the Biomimetic Process -- 6.4 Conclusions and Perspectives -- References -- 7 Porous Materials by Templating of Small Liquid Drops -- 7.1 Introduction -- 7.2 Emulsion Templating -- 7.2.1 HIPE Templating for Hydrophilic Polymers and Related Materials -- 7.2.1.1 O/W HIPEs -- 7.2.1.2 C/W HIPEs -- 7.2.1.3 Related Materials -- 7.2.2 Microemulsion Templating -- 7.2.3 Freeze-Drying of Emulsions -- 7.3 Breath Figures Templating -- 7.3.1 Breath Figures -- 7.3.2 Polymer -- 7.3.2.1 General Polymers -- 7.3.2.2 Proteins Related -- 7.3.2.3 Modification of Film Casting and Evaporation Process -- 7.3.3 Particles -- 7.3.3.1 Polymer + Nanoparticles -- 7.3.3.2 Nanoparticles Only -- 7.3.4 Posttreatment of BF-Templated Films -- 7.3.4.1 Cross-linking -- 7.3.4.2 Carbonization -- 7.3.4.3 Calcination -- 7.4 Conclusions -- Acknowledgment -- References -- Further Reading -- 8 Hierarchically Porous Materials by Phase Separation: Monoliths -- 8.1 Introduction -- 8.2 Background and Concepts -- 8.2.1 Polymerization-Induced Phase Separation in Oxide Sol Gels -- 8.2.2 Structure Formation Paralleled with Sol-Gel Transition -- 8.2.3 Macropore Control -- 8.2.4 Mesopore Control.

8.3 Examples of Materials with Controlled Macro/Mesopores -- 8.3.1 Pure Silica -- 8.3.1.1 Typical Synthesis Conditions -- 8.3.1.2 Additional Mesopore Formation by Aging -- 8.3.1.3 Hierarchically Porous Monoliths -- 8.3.1.4 Supramolecular Templating of Mesopores -- 8.3.1.5 Applications -- 8.3.2 Siloxane-Based Organic-Inorganic Hybrids -- 8.3.2.1 Network from Precursors Containing the Trialkoxysilyl Group -- 8.3.2.2 Hierarchical Pores in an MTMS-Derived Network -- 8.3.2.3 Network from Bridged Alkoxysilanes -- 8.3.2.4 Conversion into Porous SiC Ceramics and Carbon Monoliths -- 8.3.3 Titania and Zirconia -- 8.3.3.1 Choice of Starting Compounds -- 8.3.3.2 Controls over Reactivity -- 8.3.3.3 Applications -- 8.3.4 Alumina and Aluminates from an Ionic Source -- 8.3.4.1 Epoxide-Mediated Gel Formation into Macroporous Monoliths -- 8.3.4.2 Extension to Complex Oxides -- 8.3.4.3 Extension to Phosphates -- 8.3.5 Highly Cross-linked Organic-Polymer System -- 8.3.5.1 Divinylbenzene Monoliths -- 8.3.5.2 Acrylates and Other Networks -- 8.3.5.3 Conversion into Carbon Monoliths -- 8.4 Summary -- Acknowledgments -- References -- 9 Feature Synthesis of Hierarchically Porous Materials Based on Green Easy-Leaching Concept -- 9.1 Introduction -- 9.2 Hierarchically Structured Porous Materials Synthesized by Easy-Leaching Air Templates -- 9.3 Hierarchically Structured Porous Materials Synthesized by Easy-Leaching Ice Template -- 9.3.1 Ceramics -- 9.3.2 Polymer -- 9.3.3 Hydrogels (Silica) -- 9.3.4 Composites -- 9.3.5 Development of Methodology -- 9.4 Hierarchically Structured Porous Materials Synthesized by Easy Selective-Leaching Method -- 9.5 Other Easy-Leaching Concepts in the Synthesis of Hierarchically Structured Porous Materials -- 9.5.1 Three-Dimensional Meso-Macrostructured Spongelike Silica Membranes by Inorganic Salts.

9.5.2 Biomodal Mesoporous Silicas by Dilute Electrolytes -- 9.5.3 Hierarchical Bioactive Porous Silica Gels by Gas Templating -- 9.5.4 Hierarchically Porous Materials by Chemical Etching -- 9.5.5 Hierarchically Porous Materials by Sublimation -- 9.6 Summary -- Acknowledgments -- References -- 10 Integrative Chemistry Routes toward Advanced Functional Hierarchical Foams -- 10.1 Introduction -- 10.2 Organic-Inorganic PolyHIPEs Prepared from Water-in-Oil Emulsions -- 10.2.1 Non-Chemically Bonded (Class I) Hybrid PolyHIPEs -- 10.2.1.1 Inorganic Precursor in the HIPE Aqueous Phase -- 10.2.1.2 Metal Particle Generation onto PolyHIPE Surface -- 10.2.1.3 Nanocomposites -- 10.2.1.4 Organic-Inorganic Interpenetrating Networks -- 10.2.1.5 Hard Template Replica -- 10.2.2 Chemically Bonded (Class II) Hybrid PolyHIPEs -- 10.2.2.1 Inorganic-Organic Precursor's Copolymerization -- 10.2.2.2 Organic-Organometallic Precursors Copolymerization -- 10.2.2.3 Organometallic PolyHIPE Functionalization -- 10.3 Organic-Inorganic PolyHIPEs Prepared from Direct Emulsions -- 10.3.1 Functional Organic-Inorganic PolyHIPEs -- 10.3.1.1 Silica Foams (Si-HIPE) -- 10.3.1.2 Eu3+@Organo-Si(HIPE) Macro-Mesocellular Hybrid Foams Generation and Photonic Properties -- 10.3.1.3 Pd@Organo-Si(HIPE) Hybrid Monoliths: Generation Offering Cycling Heck Catalysis Reactions -- 10.3.1.4 Enzyme@Organo-Si(HIPE) Hybrid Monoliths: Highly Efficient Biocatalysts -- 10.3.2 Si(HIPE) as Hard Template to Carbonaceous Foams and Applications -- 10.3.2.1 From Si(HIPE) to Carbon(HIPE) and Their Use as Li-Ion Negative Electrodes -- 10.3.2.2 From Carbon(HIPE) to LiBH4@Carbon(HIPE) for Hydrogen Storage and Release Properties -- 10.4 Particles-Stabilized PolyHIPE -- 10.4.1 Water-in-Oil Pickering Emulsions -- 10.4.2 Oil-in-Water Pickering Emulsion -- 10.5 Conclusion and Perspectives -- References.

11 Hierarchically Structured Porous Coatings and Membranes.
Abstract:
This first book devoted to this hot field of science covers materials with bimodal, trimodal and multimodal pore size, with an emphasis on the successful design, synthesis and characterization of all kinds of hierarchically porous materials using different synthesis strategies. It details formation mechanisms related to different synthesis strategies while also introducing natural phenomena of hierarchy and perspectives of hierarchical science in polymers, physics, engineering, biology and life science. Examples are given to illustrate how to design an optimal hierarchically porous material for specific applications ranging from catalysis and separation to biomedicine, photonics, and energy conversion and storage. With individual chapters written by leading experts, this is the authoritative treatment, serving as an essential reference for researchers and beginners alike.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Subject Term:
Electronic Access:
Click to View
Holds: Copies: