Cover image for Silicon Solid State Devices and Radiation Detection.
Silicon Solid State Devices and Radiation Detection.
Title:
Silicon Solid State Devices and Radiation Detection.
Author:
Leroy, Claude.
ISBN:
9789814390057
Personal Author:
Physical Description:
1 online resource (430 pages)
Contents:
Contents -- Preface -- 1. Interactions of Charged Particles and Photons -- 1.1 Passage of Massive Charged Particles Through Matter -- 1.1.1 Collision-Loss Processes of Massive Charged Particles -- 1.1.1.1 Maximum Transferable Energy to Atomic Electrons -- 1.1.1.2 Bragg Curve and Peak -- 1.1.1.3 Energy-Loss Minimum, Density Effect and Relativistic Rise -- 1.1.1.4 Restricted Energy-Loss and Fermi Plateau -- 1.1.1.5 Energy-Loss Fluctuations and the Most Probable Energy-Loss -- 1.1.1.6 Improved Energy-Loss Distribution and Effective Most Probable Energy-Loss -- 1.1.1.7 Nuclear Energy-Loss of Massive Particles -- 1.2 Collision and Radiation Energy-Losses of Electrons and Positrons -- 1.2.1 Collision Losses and the Most Probable Energy-Loss -- 1.2.2 Radiation Energy-Losses -- 1.3 Nuclear and Non-Ionizing Energy Losses of Electrons -- 1.3.1 Scattering Cross Section of Electrons on Nuclei -- 1.3.1.1 Interpolated Expression for RMott -- 1.3.1.2 Screened Coulomb Potentials -- 1.3.1.3 Finite Nuclear Size -- 1.3.1.4 Finite Rest Mass of Target Nucleus -- 1.3.2 Nuclear Stopping Power of Electrons -- 1.3.3 Non-Ionizing Energy-Loss of Electrons -- 1.4 Interactions of Photons with Matter -- 1.4.1 Photoelectric Effect -- 1.4.2 Compton Effect -- 1.4.3 Pair Production -- 1.4.3.1 Pair Production in Nuclear and Atomic Electron Fields -- 1.4.4 Absorption of Photons in Silicon -- 2. Physics and Properties of Silicon Semiconductor -- 2.1 Structure and Growth of Silicon Crystals -- 2.1.1 Imperfections and Defects in Crystals -- 2.2 Energy Band Structure and Energy Gap -- 2.2.1 Energy Gap Dependence on Temperature and Pressure in Silicon -- 2.2.2 Effective Mass -- 2.2.2.1 Conductivity and Density-of-States Effective Masses in Silicon -- 2.3 Carrier Concentration and Fermi Level -- 2.3.1 Effective Density-of-States -- 2.3.1.1 Degenerate and Non-Degenerate Semiconductors.

2.3.1.2 Intrinsic Fermi-Level and Concentration of Carriers -- 2.3.2 Donors and Acceptors -- 2.3.2.1 Extrinsic Semiconductors and Fermi Level -- 2.3.2.2 Compensated Semiconductors -- 2.3.2.3 Maximum Temperature of Operation of Extrinsic Semiconductors -- 2.3.2.4 Quasi-Fermi Levels -- 2.3.3 Largely Doped and Degenerate Semiconductors -- 2.3.3.1 Bandgap Narrowing in Heavily Doped Semiconductors -- 2.3.3.2 Reduction of the Impurity Ionization-Energy in Heavily Doped Semiconductors -- 3. Transport Phenomena in Semiconductors -- 3.1 Thermal and Drift Motion in Semiconductors -- 3.1.1 Drift and Mobility -- 3.1.1.1 Mobility in Silicon at High Electric Fields or Up to Large Doping Concentrations -- 3.1.2 Resistivity -- 3.2 Diffusion Mechanism -- 3.2.1 Einstein's Relationship -- 3.3 Thermal Equilibrium and Excess Carriers in Semiconductors -- 3.3.1 Generation, Recombination Processes, and Carrier Lifetimes -- 3.3.1.1 Bulk Processes in Direct Semiconductors -- 3.3.1.2 Bulk Processes in Indirect Semiconductors -- 3.3.1.3 Surface Recombination -- 3.3.1.4 Lifetime of Minority Carriers in Silicon -- 3.4 The Continuity Equations -- 3.4.1 The Dielectric Relaxation Time and Debye Length -- 3.4.2 Ambipolar Transport -- 3.4.3 Charge Migration and Field-Free Regions -- 3.4.3.1 Carrier Diffusion in Silicon Radiation Detectors -- 3.4.3.2 Measurement of Charge Migration in Silicon Radiation Detectors -- 3.5 Hall Effect in Silicon Semiconductors -- 4. Properties of the p-n Junctions of Silicon Radiation Devices -- 4.1 Standard Planar Float-Zone and MESA Silicon Detectors Technologies -- 4.1.1 Standard Planar Float-Zone Technology -- 4.1.2 MESA Technology -- 4.2 Basic Principles of Junction Operation -- 4.2.1 Unpolarized p - n Junction -- 4.2.2 Polarized p - n Junction -- 4.2.3 Capacitance -- 4.2.4 Charge Collection Measurements -- 4.2.5 Charge Transport in Silicon Diodes.

4.2.6 Leakage or Reverse Current -- 4.3 Charge Collection Efficiency and Hecht Equation -- 4.4 Junction Characteristics Down to Cryogenic Temperature -- 4.4.1 Diode Structure and Rectification Down to Cryogenic Temperature -- 4.4.1.1 Rectification Property at Room Temperature -- 4.4.1.2 I - V Characteristics Down to Cryogenic Temperature -- 4.4.2 Complex Impedance of Junctions and Cryogenic Temperatures -- 5. Charged Particle Detectors -- 5.1 Spectroscopic Characteristics of Standard Planar Detectors -- 5.1.1 Noise Characterization of Silicon Detectors -- 5.1.2 Energy Resolution of Standard Planar Detectors -- 5.1.3 Energy Resolution and the Fano Factor -- 5.2 Microstrip Detectors -- 5.3 Pixel Detector Device -- 5.3.1 The PILATUS Detecting Device -- 5.3.2 The XPAD Detecting Device -- 5.3.3 The DEPFET Detecting Device -- 5.3.4 The Medipix-Type Detecting Device -- 5.3.4.1 Charge Sharing -- 5.3.4.2 Pattern Recognition -- 5.3.4.3 Mip's -- 5.3.4.4 Protons, α-Particles and Heavier Ions -- 5.3.4.5 Neutrons -- 5.3.5 Timepix -- 6. Photon Detectors and Dosimetric Devices -- 6.1 Photodiodes, Avalanche Photodiodes and Silicon Photomultipliers -- 6.1.1 Photodiodes -- 6.1.1.1 Photodiode and Electrical Model -- 6.1.2 Avalanche Photodiodes -- 6.1.3 Geiger-mode Avalanche Photodiodes and Silicon Photomultiplier Detectors -- 6.1.4 Electrical Characteristics of SiPM Devices as Function of Temperature and Frequency -- 6.1.4.1 Capacitance Response -- 6.1.4.2 Current-Voltage Characteristics -- 6.1.4.3 Electrical Model for SiPMs -- 6.2 Photovoltaic and Solar Cells -- 6.3 Neutron Detection with Silicon Detectors -- 6.3.1 Principles of Neutron Detection with Silicon Detectors -- 6.3.1.1 Signal in Silicon Detectors for Thermal Neutrons -- 6.3.1.2 Signals in Silicon Detectors by Fast Neutrons -- 6.3.2 3-D Neutron Detectors.

7. Examples of Applications of Silicon Devices in Physics and Medical Physics -- 7.1 Silicon Calorimetry -- 7.1.1 Silicon Electromagnetic Calorimeters -- 7.1.2 Luminosity Monitors -- 7.1.3 Silicon Hadronic Calorimeters -- 7.2 Silicon Vertex and Tracker Detectors -- 7.3 Applications in Space and Balloon Experiments -- 7.3.1 Balloon Experiments -- 7.3.1.1 ATIC -- 7.3.1.2 CREAM -- 7.3.1.3 CAPRICE -- 7.3.1.4 TIGRE, MEGA -- 7.3.2 Satellite Experiments -- 7.3.2.1 AGILE -- 7.3.2.2 Fermi-LAT -- 7.3.2.3 NINA -- 7.3.2.4 PAMELA -- 7.3.3 Experiments on Board of the International Space Station -- 7.3.3.1 SilEye Detectors -- 7.3.3.2 The Alpha Magnetic Spectrometer (AMS) -- 7.4 Application of Silicon Devices in Medical Physics -- 7.4.1 Application of Silicon Devices in SPECT and PET -- 7.4.1.1 Single Photon Emission Computed Tomography (SPECT) -- 7.4.1.2 Positron Emission Tomography (PET) -- 7.4.1.3 Example of Silicon Microstrip Detectors Used in Scanners -- 7.4.1.4 Example of Silicon Pad Detectors Used in Scanners -- 7.4.1.5 Example of Silicon Pixel Detectors Used in Scanners -- 7.4.1.6 Example of Silicon Photomultipliers Detectors Used in Scanners -- 7.4.2 X-Ray Medical Imaging -- 7.4.2.1 The Contrast -- 7.4.2.2 The Modulation Transfer Function -- 7.4.2.3 The Detective Quantum Efficiency -- Appendix A General Properties and Physical Constants -- A.1 Physical Constants -- Bibliography -- Index.
Abstract:
This book addresses the fundamental principles of interaction between radiation and matter, the principles of working and the operation of particle detectors based on silicon solid state devices. It covers a broad scope in the fields of application of radiation detectors based on silicon solid state devices from low to high energy physics experiments, including in outer space and in the medical environment. This book also covers state-of-the-art detection techniques in the use of radiation detectors based on silicon solid state devices and their readout electronics, including the latest developments on pixelated silicon radiation detector and their application.The content and coverage of the book benefit from the extensive experience of the two authors who have made significant contributions as researchers as well as in teaching physics students in various universities.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: