Cover image for ESD : Failure Mechanisms and Models.
ESD : Failure Mechanisms and Models.
Title:
ESD : Failure Mechanisms and Models.
Author:
Voldman, Steven H.
ISBN:
9780470747261
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (410 pages)
Contents:
ESD Failure Mechanisms and Models -- Contents -- About the Author -- Preface -- Acknowledgments -- 1 Failure Analysis and ESD -- 1.1 INTRODUCTION -- 1.1.1 FA Techniques for Evaluation of ESD Events -- 1.1.2 Fundamental Concepts of ESD FA Methods and Practices -- 1.1.3 ESD Failure: Why Do Semiconductor Chips Fail? -- 1.1.4 How to Use FA to Design ESD Robust Technologies -- 1.1.5 How to Use FA to Design ESD Robust Circuits -- 1.1.6 How to Use FA for Temperature Prediction -- 1.1.7 How to Use Failure Models for Power Prediction -- 1.1.8 FA Methods, Design Rules, and ESD Ground Rules -- 1.1.9 FA and Semiconductor Process-Induced ESD Design Asymmetry -- 1.1.10 FA Methodology and Electro-thermal Simulation -- 1.1.11 FA and ESD Testing Methodology -- 1.1.12 FA Methodology for Evaluation of ESD Parasitics -- 1.1.13 FA Methods and ESD Device Operation Verification -- 1.1.14 FA Methodology to Evaluate Inter-power Rail Electrical Connectivity -- 1.1.15 How to Use FA to Eliminate Failure Mechanisms -- 1.2 ESD FAILURE: HOW DO MICRO-ELECTRONIC DEVICES FAIL? -- 1.2.1 ESD Failure: How Do Metallurgical Junctions Fail? -- 1.2.2 ESD Failure: How Do Insulators Fail? -- 1.2.3 ESD Failure: How Do Metals Fail? -- 1.3 SENSITIVITY OF SEMICONDUCTOR COMPONENTS -- 1.3.1 ESD Sensitivity as a Function of Materials -- 1.3.2 ESD Sensitivity as a Function of Semiconductor Devices -- 1.3.3 ESD Sensitivity as a Function of Product Type -- 1.3.4 ESD and Technology Scaling -- 1.3.5 ESD Technology Roadmap -- 1.4 HOW DO SEMICONDUCTOR CHIPS FAIL--ARE THE FAILURES RANDOM OR SYSTEMATIC? -- 1.5 CLOSING COMMENTS AND SUMMARY -- PROBLEMS -- REFERENCES -- 2 Failure Analysis Tools, Models, and Physics of Failure -- 2.1 FA TECHNIQUES FOR EVALUATION OF ESD EVENTS -- 2.2 FA TOOLS -- 2.2.1 Optical Microscope -- 2.2.2 Scanning Electron Microscope -- 2.2.3 Transmission Electron Microscope.

2.2.4 Emission Microscope -- 2.2.5 Thermally Induced Voltage Alteration -- 2.2.6 Superconducting Quantum Interference Device Microscope -- 2.2.7 Atomic Force Microscope -- 2.2.8 The 2-D AFM -- 2.2.9 Picosecond Current Analysis Tool -- 2.2.10 Transmission Line Pulse--Picosecond Current Analysis Tool -- 2.3 ESD SIMULATION: ESD PULSE MODELS -- 2.3.1 Human Body Model -- 2.3.2 Machine Model -- 2.3.3 Cassette Model -- 2.3.4 Socketed Device Model -- 2.3.5 Charged Board Model -- 2.3.6 Cable Discharge Event -- 2.3.7 IEC System-Level Pulse Model -- 2.3.8 Human Metal Model -- 2.3.9 Transmission Line Pulse Testing -- 2.3.10 Very Fast Transmission Line Pulse (VF-TLP) Model -- 2.3.11 Ultra-fast Transmission Line Pulse (UF-TLP) Model -- 2.4 ELECTRO-THERMAL PHYSICAL MODELS -- 2.4.1 Tasca Model -- 2.4.2 Wunsch-Bell Model -- 2.4.3 Smith-Littau Model -- 2.4.4 Ash Model -- 2.4.5 Arkihpov, Astvatsaturyan, Godovosyn, and Rudenko Model -- 2.4.6 Dwyer, Franklin, and Campbell Model -- 2.4.7 Vlasov-Sinkevitch Model -- 2.5 STATISTICAL MODELS FOR ESD PREDICTION -- 2.6 CLOSING COMMENTS AND SUMMARY -- PROBLEMS -- REFERENCES -- 3 CMOS Failure Mechanisms -- 3.1 TABLES OF CMOS ESD FAILURE MECHANISMS -- 3.2 LOCOS ISOLATION-DEFINED CMOS -- 3.2.1 LOCOS-Bound Structures -- 3.2.2 LOCOS-Bound P+/N-well Junction Diode -- 3.2.3 LOCOS-Bound N+/P- Substrate Junction Diode -- 3.2.4 LOCOS-Bound N-well/P- Substrate Junction Diode -- 3.2.5 LOCOS-Bound Lateral N-well to N-well -- 3.2.6 LOCOS-Bound Lateral N+ to N-well -- 3.2.7 LOCOS-Bound Lateral PNP Bipolar -- 3.2.8 LOCOS-Bound Thick Oxide MOSFET -- 3.3 SHALLOW TRENCH ISOLATION (STI) -- 3.3.1 STI Pull-down ESD Failure Mechanism -- 3.3.2 STI Pull-down and Gate Wrap-around -- 3.3.3 Silicides and Diodes -- 3.3.4 Non-silicide Diode Structures -- 3.3.5 STI-Defined P+/N-well Diode -- 3.3.6 STI-Defined N-well to Substrate Diode.

3.3.7 STI Lateral N-well to N-well NPN Structures -- 3.4 POLYSILICON-DEFINED DEVICES -- 3.4.1 Polysilicon-Bound Gated Diode -- 3.5 LATERAL DIODE WITH BLOCK MASK -- 3.6 MOSFETs -- 3.6.1 N-channel MOSFETs -- 3.6.2 N-channel Multi-finger MOSFETs -- 3.6.3 Cascoded Series N-channel MOSFETs -- 3.6.4 P-channel MOSFETs -- 3.6.5 P-channel Multi-finger MOSFETs -- 3.6.6 Tungsten Silicide Gate MOSFET -- 3.6.7 Polysilicon Silicide Gate MOSFET -- 3.6.8 Metal Gate/High k Dielectric MOSFET -- 3.7 RESISTORS -- 3.7.1 Diffused Resistors -- 3.7.2 N-well Resistors -- 3.7.3 Buried Resistors -- 3.7.4 Silicide Blocked N-diffusion Resistors -- 3.8 INTERCONNECTS: WIRES, VIAS, AND CONTACTS -- 3.8.1 Aluminum Interconnects -- 3.8.2 Copper Interconnects -- 3.8.3 Tungsten Interconnects -- 3.8.4 Vias -- 3.8.5 Contacts -- 3.9 ESD FAILURE IN CMOS NANOSTRUCTURES -- 3.9.1 ESD Failures in 130 nm Technology -- 3.9.2 ESD Failures in 90 nm Technology -- 3.9.3 ESD Failures in 65 nm Technology -- 3.9.4 ESD Failures in 45 nm Technology -- 3.9.5 ESD Failures in 32 nm Technology -- 3.9.6 ESD Failures in 22 nm Technology -- 3.10 CLOSING COMMENTS AND SUMMARY -- PROBLEMS -- REFERENCES -- 4 CMOS Circuits: Receivers and Off-Chip Drivers -- 4.1 TABLES OF CMOS RECEIVER AND OCD ESD FAILURE MECHANISMS -- 4.2 RECEIVER CIRCUITS -- 4.3 RECEIVER CIRCUITS WITH ESD NETWORKS -- 4.3.1 Receiver with Dual Diode and Series Resistor -- 4.3.2 Receiver with Diode-Resistor-Diode -- 4.3.3 Receiver with Diode-Resistor-MOSFET -- 4.4 RECEIVER CIRCUITS WITH HALF-PASS TRANSMISSION GATE -- 4.5 RECEIVER WITH FULL-PASS TRANSMISSION GATE -- 4.5.1 Receiver with Full-Pass Transmission Gate with Second Power Source -- 4.6 RECEIVER, HALF-PASS TRANSMISSION GATE, AND KEEPER NETWORK -- 4.6.1 Receiver, Half-Pass Transmission Gate, and the Modified Keeper Network -- 4.7 RECEIVER CIRCUITS WITH PSEUDO-ZERO VT HALF-PASS TRANSMISSION GATE.

4.8 RECEIVER WITH ZERO VT TRANSMISSION GATE -- 4.9 RECEIVER CIRCUITS WITH BLEED TRANSISTORS -- 4.10 RECEIVER CIRCUITS WITH TEST FUNCTIONS -- 4.11 RECEIVER WITH SCHMITT TRIGGER FEEDBACK NETWORKS -- 4.12 OFF-CHIP DRIVERS -- 4.12.1 OCD Design Process-Related ESD Failure -- 4.13 SINGLE NFET PULL-DOWN OCD -- 4.14 SERIES CASCODE MOSFETs -- 4.15 I/O DESIGN CONSIDERATIONS AND ESD PARASITIC FAILURE MECHANISMS -- 4.15.1 Layout-Dependent ESD Failure Mechanisms -- 4.16 CLOSING COMMENTS AND SUMMARY -- PROBLEMS -- REFERENCES -- 5 CMOS Integration -- 5.1 TABLE OFCMOSINTEGRATION ESD FAILURE MECHANISMS -- 5.2 ARCHITECTURE AND DESIGN SYNTHESIS-RELATED FAILURES -- 5.3 ALTERNATE CURRENT LOOP -- 5.4 CHIP CAPACITANCE -- 5.5 ESD POWER CLAMPS -- 5.6 INTRA- AND INTER-DOMAIN ESD PROTECTION -- 5.7 SPLIT GROUND CONFIGURATIONS -- 5.8 MIXED VOLTAGE INTERFACE -- 5.8.1 Peripheral VCC and Core VDD Power Rails -- 5.8.2 Two Power Supply: Peripheral and Core VDD Power Rails -- 5.8.3 Voltage Regulators -- 5.9 MIXED SIGNAL INTERFACE -- 5.9.1 Digital and Analog -- 5.9.2 Digital, Analog, and RF -- 5.10 INTER-DOMAIN SIGNAL LINE ESD FAILURES -- 5.10.1 Digital-to-Analog Signal Line Failures -- 5.11 DECOUPLING CAPACITORS -- 5.12 SYSTEM CLOCK AND PHASE-LOCKED LOOP -- 5.13 FUSE NETWORKS -- 5.13.1 Fuse Networks and ESD Failure Mechanisms -- 5.13.2 eFUSE and ESD Failure Mechanisms -- 5.14 BOND PADS -- 5.14.1 Floating Bond Pads -- 5.14.2 Floating Bond Pads over Interconnects -- 5.14.3 Bond Pad Failure: Programmable VDD -- 5.14.4 Bond Pad to Bond Pad ESD Failures -- 5.14.5 Bond Pad Failure: ESD Structures under Bond Pads -- 5.15 MOSFET GATE STRUCTURE -- 5.15.1 MOSFET Floating Gate and Floating Gate Tie Down -- 5.15.2 MOSFET Gates Connected to Power VDD -- 5.16 FILL SHAPES -- 5.17 NO CONNECTS -- 5.18 TEST CIRCUITRY -- 5.19 MULTI-CHIP SYSTEMS -- 5.19.1 Multi-chip Systems on Multi-layer Ceramic.

5.19.2 Multi-chip Systems and Silicon Carriers -- 5.19.3 Multi-chip Systems: Chip-to-Chip Failures with Adjacent Chips -- 5.19.4 Multi-chip Systems: Proximity Communications -- 5.20 CMOS LATCHUP FAILURES -- 5.20.1 Table of Latchup Failures -- 5.20.2 Latchup Failure Mechanisms -- 5.21 CLOSING COMMENTS AND SUMMARY -- PROBLEMS -- REFERENCES -- 6 SOI ESD Failure Mechanisms -- 6.1 TABLES OF SOI DEVICE AND INTEGRATION ESD FAILURE MECHANISMS -- 6.2 SOI N-CHANNEL MOSFETs -- 6.2.1 SOI Single-Finger N-channel MOSFETs -- 6.2.2 SOI Multi-finger MOSFETs -- 6.3 SOI DIODES -- 6.3.1 SOI Poly-bound Gated Diode -- 6.3.2 SOI Poly-bound Gated Diode with Halo Implants -- 6.4 SOI BURIED RESISTORS -- 6.5 SOI FAILURE MECHANISMS IN 150NM TECHNOLOGY -- 6.5.1 Lateral Graded Gated SOI Diode Structure -- 6.5.2 Lateral Ungated SOI Diode Structure -- 6.6 SOI ESD FAILURE MECHANISMS IN 45NM TECHNOLOGY -- 6.6.1 SOI Lateral Gated Diode -- 6.6.2 SOI Double-Well Field Effect Device -- 6.6.3 SOI: ESD under BOX -- 6.7 SOI ESD FAILURE MECHANISMS IN 32NM TECHNOLOGY -- 6.8 SOI ESD FAILURE MECHANISMS IN 22NM TECHNOLOGY AND THE FUTURE -- 6.9 SOI DESIGN SYNTHESIS AND ESD FAILURE MECHANISMS -- 6.9.1 SOI ESD Circuit Failure Mechanisms -- 6.9.2 Mixed Voltage SOI ESD Circuit Failure Mechanisms -- 6.9.3 SOI Receiver Network ESD Failures -- 6.9.4 SOI Fuse Networks -- 6.9.5 SOI Dynamic Threshold Circuitry -- 6.9.6 SOI Active Clamp Circuitry -- 6.10 SOI INTEGRATION: ESD FAILURE MECHANISMS -- 6.11 CLOSING COMMENTS AND SUMMARY -- PROBLEMS -- REFERENCES -- 7 RF CMOS and ESD -- 7.1 TABLES OF RF CMOS ESD FAILURE MECHANISMS -- 7.2 RF MOSFET -- 7.3 RF SHALLOW TRENCH ISOLATION DIODE -- 7.4 RF POLYSILICON GATED DIODE -- 7.5 SILICON-CONTROLLED RECTIFIER -- 7.6 SCHOTTKY BARRIER DIODES -- 7.7 CAPACITORS -- 7.7.1 MIM Capacitor -- 7.7.2 Varactors and Hyper-abrupt Varactor Capacitors.

7.7.3 Metal-ILD-Metal Capacitor.
Abstract:
Electrostatic discharge (ESD) failure mechanisms continue to impact semiconductor components and systems as technologies scale from micro- to nano-electronics. This book studies electrical overstress, ESD, and latchup from a failure analysis and case-study approach. It provides a clear insight into the physics of failure from a generalist perspective, followed by investigation of failure mechanisms in specific technologies, circuits, and systems. The book is unique in covering both the failure mechanism and the practical solutions to fix the problem from either a technology or circuit methodology. Look inside for extensive coverage on: failure analysis tools, EOS and ESD failure sources and failure models of semiconductor technology, and how to use failure analysis to design more robust semiconductor components and systems; electro-thermal models and technologies; the state-of-the-art technologies discussed include CMOS, BiCMOS, silicon on insulator (SOI), bipolar technology, high voltage CMOS (HVCMOS), RF CMOS, smart power,  gallium arsenide (GaAs), gallium nitride (GaN), magneto-resistive (MR) , giant magneto-resistors (GMR),  tunneling magneto-resistor (TMR),  devices; micro electro-mechanical (MEM) systems, and  photo-masks and reticles;  practical methods to use failure analysis for the understanding of ESD circuit operation, temperature analysis, power distribution, ground rule development, internal bus distribution, current path analysis, quality metrics, (connecting the theoretical to the practical analysis); the failure of each key element of a technology from passives, active elements to the circuit, sub-system to package, highlighted by case studies of the elements, circuits and system-on-chip (SOC) in today's  products.  ESD: Failure Mechanisms and Models is a continuation of the author's series of books on ESD protection. It is an

essential reference and a useful insight into the issues that confront modern technology as we enter the Nano-electronic era.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: