Cover image for Molecular To Global Photosynthesis.
Molecular To Global Photosynthesis.
Title:
Molecular To Global Photosynthesis.
Author:
Archer, Mary D.
ISBN:
9781860945496
Personal Author:
Physical Description:
1 online resource (785 pages)
Contents:
Molecular to Global Photosynthesis -- CONTENTS -- About the Authors -- Preface -- 1 Photosynthesis and photoconversion J. Barber and M. D. Archer -- 1.1 Introduction -- 1.1.1 Photosynthesis as the creator of fossil fuels and biomass -- 1.1.2 Photosynthesis and the modern atmosphere -- 1.1.3 Fluxes and sinks of photosynthetic carbon -- 1.1.4 Oxygenic and anoxygenic photosynthesis -- 1.2 Evolution and progress of ideas -- 1.2.1 Evolution of photosynthetic organisms -- 1.2.2 Landmarks in photosynthesis research -- 1.3 The 'blue print' of the photosynthetic apparatus -- 1.3.1 Reaction centres -- 1.3.2 Light-harvesting systems -- 1.3.3 Photosynthetic membranes -- 1.3.4 Energetics of electron-transfer processes in reaction centres -- 1.3.5 Reaction centre structures -- 1.3.6 The dark reactions of photosynthesis -- 1.4 Energy-storage efficiency of photosynthesis -- 1.4.1 Carbohydrates -- 1.4.2 Gross efficiency ignoring respiration -- 1.4.3 Net efficiency allowing for respiration -- 1.4.4 Efficiencies achieved in wild and cultivated crops -- 1.5 Energy and chemicals from biomass -- References -- 2 Light absorption and harvesting A. Holzwarth -- 2.1 Introduction -- 2.1.1 The photosynthetic unit -- 2.1.2 Why are antenna systems necessary? -- 2.2 Theoretical aspects of energy transfer in photosynthetic antennae -- 2.2.1 Forster energy transfer -- 2.2.2 Coherent exciton motion -- 2.3 General principles of organisation of light-harvesting antennae -- 2.3.1 Chlorophylls and carotenoids -- 2.4 Structural and functional basis for light absorption and harvesting -- 2.4.1 Photosystem I -- 2.4.2 Photosystem II core antenna complex -- 2.4.3 Peripheral LHCll complex of PSII and minor light-harvesting complexes -- 2.4.4 The role of carotenoids in PSII -- 2.4.5 Supraorganisation of light-harvesting systems in Photosystem II.

2.4.6 Purple photosynthetic bacterial antennae systems -- 2.4.7 Non-protein containing antenna systems of green bacteria (chlorosomes) -- 2.4.8 The FMO complex -- 2.5 Concluding remarks -- References -- 3 Electron transfer in photosynthesis W. Leibl and P. Mathis -- 3.1 Biological electron transfer -- 3.1.1 Energetics and kinetics of electron transfer -- 3.2 Electron transfer in anoxygenic photosynthesis -- 3.2.1 The electron-transfer chain in anoxygenic photosynthetic systems -- 3.2.2 The reaction centre of purple photosynthetic bacteria -- 3.2.3 The bc1 complex -- 3.2.4 The reaction centre of green sulphur bacteria and Heliobacteria -- 3.3 Electron transfer in oxygenic photosynthesis -- 3.3.1 Overall electron transfer: the Z-scheme -- 3.3.2 Photosystem II reaction centre -- 3.3.3 Photosystem I -- 3.4 Photosynthetic electron transfer: importance of kinetics -- 3.4.1 Electron transfer theory: factors governing kinetics -- 3.4.2 The role of the driving force G -- 3.4.3 The role of the reorganisation energy -- 3.4.4 The role of the distance r -- 3.4.5 Primary charge separation -- Editors' note added in proof -- References -- 4 Photosynthetic carbon assimilation G. E. Edwards and D. A. Walker -- 4.1 Environmental and metabolic role -- 4.2 Chloroplast and cell -- 4.3 C3 photosynthesis in its relation to the photochemistry -- 4.4 The Colvin cycle -- 4.4.1 Carboxylation -- 4.4.2 Mechanism -- 4.4.3 Reduction -- 4.4.4 Regeneration -- 4.4.4 The phosphate translocator -- 4.5 Autocatalysis: adding to the triose phosphate pool -- 4.6 Photorespiration -- 4.6.1 Photorespiration via the Mehler-peroxidase reaction -- 4.6.2 Photorespiration via RuBP oxygenase -- 4.7 CO2-concentrating mechanisms -- 4.7.1 CAM plants -- 4.7.2 C4 plants -- 4.8 Survival and efficiencies of photosynthesis -- References.

5 Regulation of photosynthesis in higher plants D. Godde and J. F. Bornman -- 5.1 Anatomy, morphology and genetic basis of photosynthesis in higher plants -- 5.1.1 Genetic basis -- 5.1.2 Anatomical and morphological leaf features -- 5.1.3 Chloroplast ultrastructure and composition of the photosynthetic apparatus -- 5.2 Adaptation of photosynthetic electron transport to excess irradiance -- 5.2.1 Reversible down-regulation of Photosystem II by non-radiative quenching of excitation energy -- 5.2.2 Irreversible inactivation of PSII -- 5.2.3 Inactivation of the PSI reaction centre -- 5.2.4 Repair of inactivated PSII centres by D1 protein turnover -- 5.3 Regulation of photosynthetic electron transport by CO2 and oxygen -- 5.4 Feedback regulation of photosynthesis -- 5.4.1 Regulation of chloroplast metabolism by phosphate availability -- 5.4.2 Interaction between photosynthesis and assimilate transport -- 5.5 Factors limiting plant growth -- 5.5.1 Low temperatures -- 5.5.2 High temperatures -- 5.5.2 Arid climates -- 5.5.3 Mineral deficiencies -- 5.6 Possible plant responses to future climate changes -- 5.6.1 High CO2 -- 5.6.2 High tropospheric ozone -- 5.6.3 Enhanced UV-B radiation -- 5.7 Improving plant biomass -- References -- 6 The role of aquatic photosynthesis in solar energy conversion: a geoevolutionary perspective P. G. Falkowski, R. Geider and J. A. Raven -- 6.1 Introduction -- 6.2 From the origin of life to the evolution of oxygenic photosynthesis -- 6.2.1 The cyanobacteria -- 6.2.2 The eukaryotes -- 6.3 Photophysiological adaptations to aquatic environments -- 6.3.1 Cell size -- 6.3.2 Light and its utilisation -- 6.3.3 Temperature selection -- 6.4 Quantum yields of photosynthesis in the ocean -- 6.5 Net primary production in the contemporary ocean -- 6.6 Biogeochemical controls and consequences -- References.

7 Useful products from algal photosynthesis R. Martinez and Z. Dubinsky -- 7.1 Introduction -- 7.2 Microalgae -- 7.2.1 Aquaculture and animal feed -- 7.2.2 Wastewater treatment systems -- 7.2.3 Health food for human consumption -- 7.2.4 Specific products from microalgae -- 7.2.5 Culture systems -- 7.3 Macroalgae -- 7.3.1 Food products and animal feed -- 7.3.2 Wastewater treatment and integrated systems -- 7.3.3 Agricultural uses -- 7.3.4 Specific products from macroalgae -- 7.3.5 Culture systems -- 7.4 Concluding remarks -- Acknowledgements -- References -- 8 Hydrogen production by photosynthetic microorganisms V. A. Boichenko, E. Greenbaum and M. Seibert -- 8.1 Photobiological hydrogen production-a useful evolutionary oddity -- 8.2 Distribution and activity of H2 photoproducers -- 8.2.1 Photosynthetic bacteria -- 8.2.2 Cyanobacteria -- 8.2.3 Algae -- 8.3 Structure and mechanism of the enzymes catalysing Hz production -- 8.3.1 Nitrogenases -- 8.3.2 Hydrogenases -- 8.4 Metabolic versatility and conditions for hydrogen evolution -- 8.5 Quantum and energetic efficiencies of hydrogen photoproduction -- 8.6 Hydrogen production biotechnology -- 8.6.1 Hydrogen-producing systems -- 8.6.2 Photobioreactors -- 8.7 Future prospects -- Acknowledgments -- Note added in proof -- References -- 9 Photoconversion and energy crops M. J. Bullard -- 9.1 Introduction -- 9.1.1 Definitions -- 9.2 Why grow energy crops? -- 9.2.1 The importance of renewables -- 9.2.2 Biomass and energy crop classification by resource sector -- 9.2.3 Future trends -- 9.2.3 Future trends -- 9.2.4 Discounting carbon sinks -- 9.2.4 The contribution of BECs to CO2 abatement -- 9.2.5 Available resources for biomass and energy cropping -- 9.2.6 The policy framework for energy cropping -- 9.2.7 Examples of existing biomass and energy crop production programmes -- United Kingdom.

United States of America -- Brazil -- Sweden -- 9.3 The nature of biomass -- 9.3.1 Chemical composition, energy and moisture content -- 9.3.2 Conversion routes, current species used and expected yields -- Combustion -- Gasification -- Pyrolysis -- Bio-ethanol -- Biodiesel -- 9.3.3 Crop species and yields -- 9.3.4 Questions of scale -- 9.4 Physiological and agronomic basis of energy capture and the selection of appropriate energy crop species -- 9.4.1 Photosynthesis-an inefficient process -- Global productivity patterns -- 9.4.2 Striving for the ideal energy crop -- 9.4.3 Photosynthetic pathways -- 9.4.4 Radiation interception -- 9.4.5 Canopy structure and duration -- 9.4.6 Pests and pathogens -- 9.4.7 Radiation use efficiency -- 9.4.8 Plant-water relations -- 9.4.9 Moisture content at harvest -- 9.4.10 Crop density -- 9.4.11 Nutrient supply, nutrient status and soils -- 9.4.12 Potential sites for energy cropping -- 9.4.13 Soil preparation, crop planting, harvest and storage -- 9.4.14 Energy balance -- 9.5 Conclusions -- Acknowledgement -- References -- 10 The production of biofuels by thermal chemical processing of biomass A. V. Bridgwater and K. Maniatis -- 10.1 Introduction -- 10.1.1 Biological conversion summary -- 10.1.2 Biomass resources -- 10.2 Thermal conversion processes -- 10.3 Gasification -- 10.3.1 Downdraft-fixed bed reactors -- 10.3.2 Updraf-fixed bed reactors -- 10.3.3 Bubbling fluid beds -- 10.3.4 Circulating fluid beds -- 10.3.5 Twin fluid beds -- 10.3.6 Entrained beds -- 10.3.7 Other reactors -- 10.3.8 Pressurised gasification -- 10.3.9 Oxygen gasification -- 10.3.10 Integrated gasification combined cycles -- The Varnamo Plant is Sweden -- The ARBRE Plant in Yorkshire, UK -- 10.3.11 Status of biomass gasification technology -- 10.3.12 Fuel gas quality -- 10.3.13 Gas clean-up -- 10.3.14 Hot gas clean-up for particulates.

10.3.15 Tar destruction.
Abstract:
Green plants and photosynthetic organisms are the Earth's natural photoconverters of solar energy. In future, biomass and bioenergy will become increasingly significant energy sources, making a contribution both to carbon dioxide abatement and to the security, diversity and sustainability of global energy supplies. In this book, experts provide a series of authoritative chapters on the intricate mechanisms of photosynthesis and the potential for using and improving photosynthetic organisms, plants and trees to sequester carbon dioxide and to provide fuel and useful chemicals for the benefit of man.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: