Cover image for Biorefineries and Chemical Processes : Design, Integration and Sustainability Analysis.
Biorefineries and Chemical Processes : Design, Integration and Sustainability Analysis.
Title:
Biorefineries and Chemical Processes : Design, Integration and Sustainability Analysis.
Author:
Sadhukhan, Jhuma.
ISBN:
9781118698136
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (676 pages)
Contents:
Biorefineries and Chemical Processes -- Contents -- Preface -- Part I: Introduction -- Part II: Tools -- Part III: Process Synthesis and Design -- Part IV: Biorefinery Systems -- Part V: Interacting Systems of Biorefineries (available on the companion website) -- Case Studies (available on the companion website) -- Acknowledgments -- About the Authors -- Companion Website -- Nomenclature -- Part I Introduction -- 1 Introduction -- 1.1 Fundamentals of the Biorefinery Concept -- 1.1.1 Biorefinery Principles -- 1.1.2 Biorefinery Types and Development -- 1.2 Biorefinery Features and Nomenclature -- 1.3 Biorefinery Feedstock: Biomass -- 1.3.1 Chemical Nature of Biorefinery Feedstocks -- 1.3.2 Feedstock Characterization -- 1.4 Processes and Platforms -- 1.5 Biorefinery Products -- 1.6 Optimization of Preprocessing and Fractionation for Bio Based Manufacturing -- 1.6.1 Background of Lignin -- 1.7 Electrochemistry Application in Biorefineries -- 1.8 Introduction to Energy and Water Systems -- 1.9 Evaluating Biorefinery Performances -- 1.9.1 Performance Indicators -- 1.9.2 Life Cycle Analysis -- 1.10 Chapters -- 1.11 Summary -- References -- Part II Tools -- 2 Economic Analysis -- 2.1 Introduction -- 2.2 General Economic Concepts and Terminology -- 2.2.1 Capital Cost and Battery Limits -- 2.2.2 Cost Index -- 2.2.3 Economies of Scale -- 2.2.4 Operating Cost -- 2.2.5 Cash Flows -- 2.2.6 Time Value of Money -- 2.2.7 Discounted Cash Flow Analysis and Net Present Value -- 2.2.8 Profitability Analysis -- 2.2.9 Learning Effect -- 2.3 Methodology -- 2.3.1 Capital Cost Estimation -- 2.3.2 Profitability Analysis -- 2.4 Cost Estimation and Correlation -- 2.4.1 Capital Cost -- 2.4.2 Operating Cost -- 2.5 Summary -- 2.6 Exercises -- References -- 3 Heat Integration and Utility System Design -- 3.1 Introduction -- 3.2 Process Integration.

3.3 Analysis of Heat Exchanger Network Using Pinch Technology -- 3.3.1 Data Extraction -- 3.3.2 Construction of Temperature-Enthalpy Profiles -- 3.3.3 Application of the Graphical Approach for Energy Recovery -- 3.4 Utility System -- 3.4.1 Components in Utility System -- 3.5 Conceptual Design of Heat Recovery System for Cogeneration -- 3.5.1 Conventional Approach -- 3.5.2 Heuristic Based Approach -- 3.6 Summary -- References -- 4 Life Cycle Assessment -- 4.1 Life Cycle Thinking -- 4.2 Policy Context -- 4.3 Life Cycle Assessment (LCA) -- 4.4 LCA: Goal and Scope Definition -- 4.5 LCA: Inventory Analysis -- 4.6 LCA: Impact Assessment -- 4.6.1 Global Warming Potential -- 4.6.2 Land Use -- 4.6.3 Resource Use -- 4.6.4 Ozone Layer Depletion -- 4.6.5 Acidification Potential -- 4.6.6 Photochemical Oxidant Creation Potential -- 4.6.7 Aquatic Ecotoxicity -- 4.6.8 Eutrophication Potential -- 4.6.9 Biodiversity -- 4.7 LCA: Interpretation -- 4.7.1 Stand-Alone LCA -- 4.7.2 Accounting LCA -- 4.7.3 Change Oriented LCA -- 4.7.4 Allocation Method -- 4.8 LCIA Methods -- 4.9 Future R&D Needs -- References -- 5 Data Uncertainty and Multicriteria Analyses -- 5.1 Data Uncertainty Analysis -- 5.1.1 Dominance Analysis -- 5.1.2 Contribution Analysis -- 5.1.3 Scenario Analysis -- 5.1.4 Sensitivity Analysis -- 5.1.5 Monte Carlo Simulation -- 5.2 Multicriteria Analysis -- 5.2.1 Economic Value and Environmental Impact Analysis of Biorefinery Systems -- 5.2.2 Socioeconomic Analysis -- 5.3 Summary -- References -- 6 Value Analysis -- 6.1 Value on Processing (VOP) and Cost of Production (COP) of Process Network Streams -- 6.2 Value Analysis Heuristics -- 6.2.1 Discounted Cash Flow Analysis -- 6.3 Stream Economic Profile -- 6.4 Concept of Boundary and Evaluation of Economic Margin of a Process Network -- 6.5 Stream Profitability Analysis.

6.5.1 Value Analysis to Determine Necessary and Sufficient Condition for Streams to be Profitable or Nonprofitable -- 6.6 Summary -- References -- 7 Combined Economic Value and Environmental Impact (EVEI) Analysis -- 7.1 Introduction -- 7.2 Equivalency Between Economic and Environmental Impact Concepts -- 7.3 Evaluation of Streams -- 7.4 Environmental Impact Profile -- 7.5 Product Economic Value and Environmental Impact (EVEI) Profile -- 7.6 Summary -- References -- 8 Optimization -- 8.1 Introduction -- 8.2 Linear Optimization -- 8.2.1 Step 1: Rewriting in Standard LP Format -- 8.2.2 Step 2: Initializing the Simplex Method -- 8.2.3 Step 3: Obtaining an Initial Basic Solution -- 8.2.4 Step 4: Determining Simplex Directions -- 8.2.5 Step 5: Determining the Maximum Step Size by the Minimum Ratio Rule -- 8.2.6 Step 6: Updating the Basic Variables -- 8.3 Nonlinear Optimization -- 8.3.1 Gradient Based Methods -- 8.3.2 Generalized Reduced Gradient (GRG) Algorithm -- 8.4 Mixed Integer Linear or Nonlinear Optimization -- 8.4.1 Branch and Bound Method -- 8.5 Stochastic Method -- 8.5.1 Genetic Algorithm (GA) -- 8.5.2 Non-dominated Sorting Genetic Algorithm (NSGA) Optimization -- 8.5.3 GA in MATLAB -- 8.6 Summary -- References -- Part III Process Synthesis and Design -- 9 Generic Reactors: Thermochemical Processing of Biomass -- 9.1 Introduction -- 9.2 General Features of Thermochemical Conversion Processes -- 9.3 Combustion -- 9.4 Gasification -- 9.4.1 The Process -- 9.4.2 Types of Gasifier -- 9.4.3 Design Considerations -- 9.5 Pyrolysis -- 9.5.1 What is Bio-Oil? -- 9.5.2 How Is Bio-Oil Obtained from Biomass? -- 9.5.3 How Fast Pyrolysis Works -- 9.6 Summary -- Exercises -- References -- 10 Reaction Thermodynamics -- 10.1 Introduction -- 10.2 Fundamentals of Design Calculation -- 10.2.1 Heat of Combustion -- 10.2.2 Higher and Lower Heating Values.

10.2.3 Adiabatic Flame Temperature -- 10.2.4 Theoretical Air-to-Fuel Ratio -- 10.2.5 Cold Gas Efficiency -- 10.2.6 Hot Gas Efficiency -- 10.2.7 Equivalence Ratio -- 10.2.8 Carbon Conversion -- 10.2.9 Heat of Reaction -- 10.3 Process Design: Synthesis and Modeling -- 10.3.1 Combustion Model -- 10.3.2 Gasification Model -- 10.3.3 Pyrolysis Model -- 10.4 Summary -- Exercises -- References -- 11 Reaction and Separation Process Synthesis: Chemical Production from Biomass -- 11.1 Chemicals from Biomass: An Overview -- 11.2 Bioreactor and Kinetics -- 11.2.1 An Example of Lactic Acid Production -- 11.2.2 An Example of Succinic Acid Production -- 11.2.3 Heat Transfer Strategies for Reactors -- 11.2.4 An Example of Ethylene Production -- 11.2.5 An Example of Catalytic Fast Pyrolysis -- 11.3 Controlled Acid Hydrolysis Reactions -- 11.4 Advanced Separation and Reactive Separation -- 11.4.1 Membrane Based Separations -- 11.4.2 Membrane Filtration -- 11.4.3 Electrodialysis -- 11.4.4 Ion Exchange -- 11.4.5 Integrated Processes -- 11.4.6 Reactive Extraction -- 11.4.7 Reactive Distillation -- 11.4.8 Crystallization -- 11.4.9 Precipitation -- 11.5 Guidelines for Integrated Biorefinery Design -- 11.5.1 An Example of Levulinic Acid Production: The Biofine Process -- 11.6 Summary -- References -- 12 Polymer Processes -- 12.1 Polymer Concepts -- 12.1.1 Polymer Classification -- 12.1.2 Polymer Properties -- 12.1.3 From Petrochemical Based Polymers to Biopolymers -- 12.2 Modified Natural Biopolymers -- 12.2.1 Starch Polymers -- 12.2.2 Cellulose Polymers -- 12.2.3 Natural Fiber and Lignin Composites -- 12.3 Modeling of Polymerization Reaction Kinetics -- 12.3.1 Chain-Growth or Addition Polymerization -- 12.3.2 Step-Growth Polymerization -- 12.3.3 Copolymerization -- 12.4 Reactor Design for Biomass Based Monomers and Biopolymers.

12.4.1 Plug Flow Reactor (PFR) Design for Reaction in Gaseous Phase -- 12.4.2 Bioreactor Design for Biopolymer Production- An Example of Polyhydroxyalkanoates -- 12.4.3 Catalytic Reactor Design -- 12.4.4 Energy Transfer Models of Reactors -- 12.5 Synthesis of Unit Operations Combining Reaction and Separation Functionalities -- 12.5.1 Reactive Distillation Column -- 12.5.2 An Example of a Novel Reactor Arrangement -- 12.6 Integrated Biopolymer Production in Biorefineries -- 12.6.1 Polyesters -- 12.6.2 Polyurethanes -- 12.6.3 Polyamides -- 12.6.4 Polycarbonates -- 12.7 Summary -- References -- 13 Separation Processes: Carbon Capture -- 13.1 Absorption -- 13.2 Absorption Process Flowsheet Synthesis -- 13.3 The RectisolTM Technology -- 13.3.1 Design and Operating Regions of RectisolTM Process -- 13.3.2 Energy Consumption of a RectisolTM Process -- 13.4 The SelexolTM Technology -- 13.4.1 SelexolTM Process Parametric Analysis -- 13.5 Adsorption Process -- 13.5.1 Kinetic Modeling of SMR Reactions -- 13.5.2 Adsorption Modeling of Carbon Dioxide -- 13.5.3 Sorption Enhanced Reaction (SER) Process Dynamic Modeling Framework -- 13.6 Chemical Looping Combustion -- 13.7 Low Temperature Separation -- 13.8 Summary -- References -- Part IV Biorefinery Systems -- 14 Bio-Oil Refining I: Fischer-Tropsch Liquid and Methanol Synthesis -- 14.1 Introduction -- 14.2 Bio-Oil Upgrading -- 14.2.1 Physical Upgrading -- 14.2.2 Chemical Upgrading -- 14.2.3 Biological Upgrading -- 14.3 Distributed and Centralized Bio-Oil Processing Concept -- 14.3.1 The Concept -- 14.3.2 The Economics of Local Distribution of Bio-Oil -- 14.3.3 The Economics of Importing Bio-Oil from Other Countries -- 14.4 Integrated Thermochemical Processing of Bio-Oil into Fuels -- 14.4.1 Synthetic Fuel Production -- 14.4.2 Methanol Production.

14.5 Modeling, Integration and Analysis of Thermochemical Processes of Bio-Oil.
Abstract:
Jhuma Sadhukhan Centre for Environmental Strategy, University of Surrey, UKKok Siew Ng Centre for Process Integration, The University of Manchester, UKElias Martinez H. Centre for Environmental Strategy, University of Surrey, UK.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: