Cover image for Chemicals and Fuels from Bio-Based Building Blocks.
Chemicals and Fuels from Bio-Based Building Blocks.
Title:
Chemicals and Fuels from Bio-Based Building Blocks.
Author:
Cavani, Fabrizio.
ISBN:
9783527698196
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (744 pages)
Contents:
Cover -- Title Page -- Copyright -- Contents -- List of Contributors -- Preface -- Volume 1 -- Part I Drop-in Bio-Based Chemicals -- Chapter 1 Olefins from Biomass -- 1.1 Introduction -- 1.2 Olefins from Bioalcohols -- 1.2.1 Ethanol to Ethylene -- 1.2.2 Ethanol to Butadiene -- 1.2.3 C3 Alcohols to Olefins -- 1.2.4 C4 Alcohols to Olefins -- 1.3 Alternative Routes to Bio-Olefins -- 1.3.1 Catalytic Cracking -- 1.3.2 Metathesis -- 1.4 Conclusions -- References -- Chapter 2 Aromatics from Biomasses: Technological Options for Chemocatalytic Transformations -- 2.1 The Synthesis of Bioaromatics -- 2.2 The Synthesis of Bio-p-Xylene, a Precursor for Bioterephthalic Acid -- 2.2.1 Aromatic Hydrocarbons from Sugars -- 2.2.1.1 The Virent Technology -- 2.2.2 Aromatic Hydrocarbons from Lignocellulose or Other Biomass -- 2.2.2.1 The Anellotech Technology -- 2.2.3 p-Xylene from Bioalcohols -- 2.2.3.1 The Gevo Technology -- 2.2.3.2 p-Xylene from Bioethanol -- 2.2.4 Aromatic Hydrocarbons from Lignin -- 2.2.4.1 The Biochemtex MOGHI Process -- 2.2.5 Other Initiatives -- 2.3 The Synthesis of Bioterephthalic Acid without the Intermediate Formation of p-Xylene -- 2.4 Technoeconomic and Environmental Assessment of Bio-p-Xylene Production -- References -- Chapter 3 Isostearic Acid: A Unique Fatty Acid with Great Potential -- 3.1 Introduction -- 3.2 Biorefinery and Related Concepts -- 3.3 Sustainability of Oils and Fats for Industrial Applications -- 3.4 Fatty Acids -- 3.5 Polymerization of Fatty Acids -- 3.5.1 Thermal Polymerization -- 3.5.2 Clay-Catalyzed Polymerization -- 3.6 ISAC -- 3.7 Other Branched Chain Fatty Acids -- 3.7.1 Natural -- 3.7.2 Petrochemical -- 3.8 Properties of ISAC -- 3.8.1 Thermal and Oxidative Stability -- 3.8.2 Low-Temperature Liquidity -- 3.8.3 Solubility -- 3.8.4 Biodegradability -- 3.9 Applications of ISAC -- 3.9.1 Lubricants.

3.9.2 Cosmetics and Personal Care -- 3.9.3 Other Industrials -- 3.10 Selective Routes for the Production of ISAC -- 3.10.1 Optimization of the clay-catalyzed process -- 3.10.2 Zeolite-catalyzed branching in the petroleum industry -- 3.10.3 Zeolite-catalyzed branching of fatty acids -- 3.10.4 Ferrierite-a breakthrough in fatty acid isomerization -- 3.11 Summary and Conclusions -- Acknowledgments -- References -- Chapter 4 Biosyngas and Derived Products from Gasification and Aqueous Phase Reforming -- 4.1 Introduction -- 4.2 Biomass Gasification -- 4.2.1 Gasification Process -- 4.2.1.1 Densification and High-Temperature Gasification -- 4.2.1.2 Direct Gasification -- 4.2.2 Catalytic Gasification -- 4.2.3 Gas Upgrading by Reforming -- 4.2.4 Downstream of the Reformer -- 4.2.5 Future Process Breakthrough -- 4.3 Aqueous Phase Reforming -- 4.3.1 Thermodynamic and Kinetic Considerations -- 4.3.2 Catalysts for APR Reaction -- 4.3.3 Reaction Conditions and Feed -- 4.3.4 Mechanism of Reaction -- 4.3.5 APR on Biomass Fractions -- 4.3.6 Pilot Plants and Patents -- 4.3.7 Integration of the APR Process in a Biorefinery -- References -- Chapter 5 The Hydrogenation of Vegetable Oil to Jet and Diesel Fuels in a Complex Refining Scenario -- 5.1 Introduction -- 5.2 The Feedstock -- 5.2.1 Vegetable Oils -- 5.2.2 Animal Oils and Fats -- 5.2.3 Triglycerides from Algae -- 5.3 Hydroconversion Processes of Vegetable Oils and Animal Fats -- 5.3.1 EcofiningTM Process -- 5.3.2 Product Characteristics and Fuel Specification -- 5.4 Chemistry of Triglycerides Hydroconversion -- 5.4.1 Deoxygenation over Sulfided Catalysts -- 5.4.2 Hydroisomerization -- 5.5 Life Cycle Assessment and Emission -- 5.5.1 Emissions -- 5.6 The Green Refinery Project -- 5.7 Conclusions -- References -- Part II Bio-Monomers -- Chapter 6 Synthesis of Adipic Acid Starting from Renewable Raw Materials.

6.1 Introduction -- 6.2 Challenges for Bio-Based Chemicals Production -- 6.3 Choice of Adipic Acid as Product Target by Rennovia -- 6.4 Conventional and Fermentation-Based Adipic Acid Production Technologies -- 6.5 Rennovia's Bio-Based Adipic Acid Production Technology -- 6.6 Step 1: Selective Oxidation of Glucose to Glucaric Acid -- 6.6.1 Identification of Selective Catalysts for Aerobic Oxidation of Glucose to Glucaric Acid at Native pH -- 6.6.2 Demonstration of Long-Term Catalyst Stability for Glucose Oxidation Reaction -- 6.7 Step 2: Selective Hydrodeoxygenation of Glucaric Acid to Adipic Acid -- 6.7.1 Identification of Catalysts and Conditions for the Selective Reduction of Glucaric Acid to Adipic Acid -- 6.7.2 Reaction Pathways for the Selective Reduction of Glucaric Acid to Adipic Acid -- 6.7.3 Demonstration of Long-Term Catalyst Stability for Glucaric Acid Hydrodeoxygenation Reaction -- 6.8 Current Status of Rennovia's Bio-Based Adipic Acid Process Technology -- 6.9 Bio- versus Petro-Based Adipic Acid Production Economics -- 6.10 Life Cycle Assessment -- 6.11 Conclusions -- References -- Chapter 7 Industrial Production of Succinic Acid -- 7.1 Introduction -- 7.2 Market and Applications -- 7.2.1 Hydrogenation of Succinic Acid -- 7.2.2 Polyester-Polyurethane Markets -- 7.3 Technology -- 7.3.1 Biochemical Pathway and Host Microorganism Considerations -- 7.3.2 Fermentation Process Options -- 7.3.2.1 E. coli Systems -- 7.3.2.2 Corynebacterium glutamicum Systems -- 7.3.2.3 Other Bacterial Systems -- 7.3.2.4 Yeast Systems -- 7.3.2.5 Media and pH Control -- 7.3.2.6 Aeration and Gas Systems -- 7.3.3 Downstream Process Options -- 7.4 Life Cycle Analysis -- 7.5 Conclusion -- References -- Chapter 8 2,5-Furandicarboxylic Acid Synthesis and Use -- 8.1 Introduction -- 8.1.1 2,5-Furandicarboxylic Acid and Terephthalic Acid.

8.2 Synthesis of 2,5-Furandicarboxylic Acid by Oxidation of HMF -- 8.2.1 Aqueous Phase Oxidation of HMF -- 8.2.2 Oxidation of HMF in Acetic Acid -- 8.2.3 Oxidative Esterification of HMF to 2,5-Furan Dimethylcarboxylate (FDMC) -- 8.3 Synthesis of 2,5-Furandicarboxylic Acid from Carbohydrates and Furfural -- 8.4 2,5-Furandicarboxylic Acid-Derived Surfactants and Plasticizers -- 8.5 2,5-Furandicarboxylic Acid-Derived Polymers -- 8.5.1 Synthesis and Properties of Polyethylene Furandicarboxylate (PEF) and Related Polyesters -- 8.5.2 Synthesis and Properties of Other Furanic Polyesters and Copolyesters -- 8.6 Conclusion -- References -- Chapter 9 Production of Bioacrylic Acid -- 9.1 Introduction -- 9.2 Chemical Routes -- 9.2.1 Production of AA from GLY -- 9.2.1.1 Direct Pathway from GLY to AA -- 9.2.1.2 Indirect Pathways from GLY to AA -- 9.2.2 Production of AA from LA -- 9.2.2.1 LA from GLY -- 9.2.2.2 Direct Dehydration of LA to AA -- 9.2.3 Production of AA from Biopropylene -- 9.3 Biochemical Routes -- 9.4 Summary and Conclusions -- References -- Chapter 10 Production of Ethylene and Propylene Glycol from Lignocellulose -- 10.1 Introduction -- 10.1.1 Motivation -- 10.1.2 Early Examples -- 10.2 Reaction Mechanism -- 10.2.1 Possible Transformation Schemes -- 10.2.2 Undesired Side Reactions -- 10.2.3 C-C and C-O Bond Cleavage for Selective Glycol Formation -- 10.3 Glycol Production -- 10.3.1 Ruthenium Catalysts -- 10.3.1.1 C5 and C6 Sugar Alcohols and Monosaccharides -- 10.3.1.2 Polysaccharides -- 10.3.2 Platinum Catalysts -- 10.3.2.1 C5 and C6 Sugar Alcohols and Monosaccharides -- 10.3.2.2 Polysaccharides -- 10.3.3 Other Noble Metal Catalysts -- 10.3.4 Nickel-Based Catalysts -- 10.3.4.1 C5 and C6 Monosaccharides and Sugar Alcohols -- 10.3.4.2 Polysaccharides -- 10.3.5 Copper and Other Base Metal Catalysts.

10.3.5.1 C5 and C6 Monosaccharides and Sugar Alcohols -- 10.3.5.2 Polysaccharides -- 10.4 Direct Formation of Glycols from Lignocellulose -- 10.5 Technical Application of Glycol Production -- 10.6 Summary and Conclusion -- References -- Part III Polymers from Bio-Based building blocks -- Chapter 11 Introduction -- References -- Chapter 12 Polymers from Pristine and Modified Natural Monomers -- 12.1 Monomers and Polymers from Vegetable Oils -- 12.1.1 Introduction -- 12.1.2 Polyesters -- 12.1.3 Polyurethanes -- 12.1.4 Polyamides -- 12.2 Sugar-Derived Monomers and Polymers -- 12.2.1 Introduction -- 12.2.2 Polymers from 1,4:3,6-Dianhydrohexitols -- 12.2.3 Polymers from Diacetals Derived from Sugars -- 12.3 Polymers from Terpenes and Rosin -- 12.3.1 Introduction -- 12.3.2 Terpenes and Rosin Production and Application -- 12.3.2.1 Isomerization Reactions to Obtain Different Terpenes -- 12.3.3 Terpenes as Monomers for Polymer Synthesis without Any Modification -- 12.3.3.1 Cationic Polymerization of Pinenes -- 12.3.3.2 Polymyrcene -- 12.3.4 Terpenes as Monomers after Chemical Modification -- 12.3.4.1 Limonene Modified by the Thiol-Ene Reaction -- 12.3.4.2 Dimethylstyrene from Limonene -- 12.3.4.3 Terephthalic Acid Synthesis from Terpenes -- 12.3.4.4 Epoxidation of Limonene for the Synthesis of Polycarbonates and Polyurethanes -- 12.3.4.5 Copolymers Containing Terpenes -- 12.3.5 Sesquiterpenes -- 12.3.6 Terpenoids -- 12.3.7 Rosin -- 12.3.7.1 Thermoset Polymers from Rosin -- 12.3.7.2 Thermoplastic Polymers from Rosin -- 12.4 Final Considerations -- References -- Chapter 13 Polymers from Monomers Derived from Biomass -- 13.1 Polymers Derived from Furans -- 13.1.1 Introduction -- 13.1.2 Polyesters -- 13.1.3 Polyamides -- 13.1.4 Polyurethanes -- 13.1.5 Polymers Based on the DA Reaction -- 13.1.6 Polyfurans -- 13.2 Polymers from Diacids, Hydroxyacids, Diols.

13.2.1 Introduction.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: