Cover image for Materials in Energy Conversion, Harvesting, and Storage.
Materials in Energy Conversion, Harvesting, and Storage.
Title:
Materials in Energy Conversion, Harvesting, and Storage.
ISBN:
9781118892350
Edition:
1st ed.
Physical Description:
1 online resource (487 pages)
Contents:
Materials in Energy Conversion, Harvesting, and Storage -- Copyright -- Contents -- Preface -- Acknowledgments -- About the Author -- Chapter 1 Energy Resources, Greenhouse Gases, and Materials -- 1.1 Energy Supply and Consumption -- 1.2 Energy Problems and Challenges -- 1.3 Current State of Improving Energy Efficiency -- 1.4 Inseparable Links between Energy and Materials -- 1.5 Terms Related to Energy and Power -- 1.6 Outline of This Book -- References -- Chapter 2 Fossil Energy and Materials -- 2.1 Fossil Fuels -- 2.2 Existing Coal-Fired Power Plants -- 2.3 Materials for Existing Coal-Fired Power Plants -- 2.3.1 Material Issues -- 2.3.1.1 Fatigue and Creep -- 2.3.1.2 Corrosion -- 2.3.2 Material Development -- 2.4 Integrated Gasification Combined Cycle Plants -- 2.5 Materials for Integrated Gasification Combined Cycle Plants -- 2.6 Oxy-Fuel Combustion Plants and Material Needs -- 2.6.1 Oxy-fuel Combustion -- 2.6.2 Material Needs -- 2.6.3 Thermal Barrier Coatings -- 2.6.3.1 Thermal Barrier Coating Compositions -- 2.6.3.2 Thermal Barrier Coating Processing -- 2.6.3.3 Thermal Barrier Coating Defects -- 2.7 Materials in Oil and Gas Energy Conversion -- 2.8 Carbon Capture and Storage -- 2.8.1 Carbon Capture -- 2.8.1.1 Carbon Capture Methods -- 2.8.1.2 Carbon Separation Methods -- 2.8.2 Carbon Storage -- 2.8.2.1 Carbon Storage in Geological Formations -- 2.8.2.2 Carbon Storage in Ocean -- 2.8.2.3 Carbon Storage Concerns -- 2.9 Summary -- References -- Chapter 3 Nuclear Energy Conversion and Materials -- 3.1 State of Nuclear Energy -- 3.2 Advantages and Disadvantages of Nuclear Energy -- 3.3 Nuclear Fission and Fusion -- 3.4 Fission Process for Nuclear Energy Generation -- 3.5 Two Different Fuel Cycles -- 3.6 Nuclear Fuel Supply -- 3.6.1 Uranium and Plutonium -- 3.6.2 Thorium -- 3.7 Classification of Nuclear Fission Reactors.

3.7.1 Generation Classification -- 3.7.2 Coolant-Based Classification -- 3.8 Commercial Reactors -- 3.9 Future Reactors -- 3.10 Nuclear Materials -- 3.10.1 Core Components -- 3.10.1.1 Nuclear Fuels -- 3.10.1.2 Cladding Materials -- 3.10.2 Out-of-Core Materials -- 3.10.3 Balance-of-Plant Materials -- 3.11 Nuclear Waste Management -- 3.11.1 Waste Types -- 3.11.2 Waste Storage -- 3.11.3 Geologic Disposal -- 3.12 Fusion Reactors and Material Issues -- 3.12.1 Fusion Reactors -- 3.12.2 Fusion Materials -- 3.12.3 Fusion Wastes -- 3.13 Summary -- References -- Chapter 4 Solar Energy and Materials -- 4.1 Solar Energy -- 4.2 Photovoltaic Cell Fundamentals -- 4.3 First-Generation Solar Cells -- 4.4 Second-Generation Solar Cells -- 4.4.1 Crystalline Silicon Thin-Film Cells -- 4.4.2 Amorphous Silicon Thin-Film Cells -- 4.4.3 CdTe and CuInGaSe2 Thin-Film Cells -- 4.5 Third-Generation Solar Cells -- 4.5.1 Tandem and Multijunction Cells -- 4.5.2 Impurity- and Intermediate-Band Solar Cells -- 4.5.3 Multiple Carrier and Hot Carrier Cells -- 4.6 Dye-Sensitized Solar Cells -- 4.6.1 Working Principles -- 4.6.2 Anode -- 4.6.3 Counter Electrode -- 4.6.4 Sensitizers -- 4.6.5 Solid State Electrolytes -- 4.7 Organic Photovoltaics -- 4.7.1 Working Principles -- 4.7.2 Differences between Conventional and Organic Solar Cells -- 4.7.3 Advantages and Challenges of Organic Photovoltaics -- 4.8 High-Efficiency Concentrator Photovoltaics -- 4.9 Summary -- References -- Chapter 5 Bioenergy Conversion and Materials -- 5.1 Bioenergy -- 5.2 Biomass and Thermal Conversion -- 5.2.1 Biomass Resources -- 5.2.2 Biomass Thermal Conversion -- 5.2.2.1 Biomass Combustion -- 5.2.2.2 Biomass Gasification -- 5.2.2.3 Biomass Pyrolysis -- 5.3 Biofuel -- 5.3.1 Existing Fuels -- 5.3.2 Cellulosic Biomass -- 5.3.3 Algae and Microalgae -- 5.3.4 Biofuel Efficiency.

5.3.5 Advantages and Disadvantages of Biofuels -- 5.4 Bioenergy Sustainability -- 5.5 Summary -- References -- Chapter 6 Wind Energy Conversion and Materials -- 6.1 Wind Energy Resources -- 6.2 Advantages and Issues of Wind Energy Generation -- 6.3 Wind Turbines -- 6.4 Material Issues -- 6.5 Wind Turbine Failures -- 6.6 Summary -- References -- Chapter 7 Hydro, Geothermal, Ocean Energy and Materials -- 7.1 Hydropower -- 7.1.1 Hydropower Capacity -- 7.1.2 Material Challenges in Hydropower Conversion -- 7.2 Geothermal Energy -- 7.2.1 Geothermal Resources and Capabilities -- 7.2.2 Material Challenges in Geothermal Energy Production -- 7.3 Ocean Energy -- 7.3.1 Ocean Energy Resources and Potentials -- 7.3.2 Material Challenges in Ocean Energy Conversion -- 7.4 Summary -- References -- Chapter 8 Fuel Cells and Materials -- 8.1 What Is a Fuel Cell? -- 8.2 Applications and Characteristics of Fuel Cells -- 8.3 Alkaline Fuel Cells -- 8.3.1 Constructions of Alkaline Electrolyte Fuel Cells -- 8.3.1.1 Electrolytes -- 8.3.1.2 Electrodes -- 8.3.1.3 Binders -- 8.3.1.4 Catalysts -- 8.3.1.5 Monopolar and Bipolar Designs -- 8.3.2 Advantages of Alkaline Electrolyte Fuel Cells -- 8.3.3 CO2 Sensitivity -- 8.3.4 Solid Polymer Anion Exchange Membrane Electrolytes -- 8.3.5 Current State of Alkaline Fuel Cells -- 8.4 Proton Exchange Membrane Fuel Cells -- 8.4.1 Constructions and Characteristics of Proton Exchange Membrane Fuel Cells -- 8.4.2 Gas Diffusion Layers -- 8.4.3 Catalysts -- 8.4.4 Polymer Electrolytes -- 8.4.5 Bipolar Plates -- 8.4.5.1 Metal Bipolar Plates -- 8.4.5.2 Bipolar Plate Coatings -- 8.4.5.3 Carbonaceous Material Bipolar Plates -- 8.4.5.4 Carbon Composite Bipolar Plates -- 8.4.6 Water Management -- 8.4.7 Advantages of Proton Exchange Membrane Fuel Cells -- 8.5 Direct Methanol Fuel Cells -- 8.5.1 Fundamental Principles.

8.5.2 Direct Methanol Fuel Cell Components -- 8.5.2.1 Catalysts -- 8.5.2.2 Electrolyte Membranes -- 8.5.2.3 Bipolar Plates -- 8.5.3 Direct Methanol Fuel Cell Advantages and Challenges -- 8.6 Phosphoric Acid Fuel Cells -- 8.6.1 Phosphoric Acid Fuel Cell Development -- 8.6.2 Phosphoric Acid Fuel Cell Mechanisms and Characteristics -- 8.6.3 Phosphoric Acid Electrolytes -- 8.6.4 Catalysts -- 8.6.5 Electrodes -- 8.7 Molten Carbonate Fuel Cells -- 8.7.1 Cell Construction -- 8.7.2 General Features -- 8.7.3 Cathodes -- 8.7.4 Anodes -- 8.7.5 Electrolytes -- 8.7.6 Separator Plates -- 8.8 Solid Oxide Fuel Cells -- 8.8.1 Basics -- 8.8.2 Constructions of Different Solid Oxide Fuel Cells -- 8.8.3 Materials in Solid Oxide Fuel Cells -- 8.8.3.1 Cathodes -- 8.8.3.2 Anodes -- 8.8.3.3 Electrolytes -- 8.8.3.4 Interconnects -- 8.8.3.5 Sealants -- 8.8.4 Intermediate- and Low-Temperature Solid Oxide Fuel Cells -- 8.8.4.1 Cathodes -- 8.8.4.2 Electrolytes -- 8.8.4.3 Anodes -- 8.8.4.4 Interconnects -- 8.9 Summary -- References -- Chapter 9 Mechanoelectric Energy Harvesting and Materials -- 9.1 Energy Harvesting for Low-Power Applications -- 9.2 Fundamental Mechanisms of Mechanoelectric Energy Conversion -- 9.3 Mechanoelectric Energy Harvesting Materials -- 9.4 Sources of Mechanoelectric Energy -- 9.5 Different Energy Harvesting Methods -- 9.5.1 Nonresonant Devices -- 9.5.1.1 Impact-Coupled Devices -- 9.5.1.2 Human-Based Devices -- 9.5.1.3 Ambient Fluid Flows -- 9.5.2 Resonant Devices -- 9.6 Summary -- References -- Chapter 10 Thermoelectric Energy Conversion and Materials -- 10.1 Thermoelectric Energy Conversion Principles -- 10.2 Thermoelectric Energy Potentials and Applications -- 10.3 Thermoelectric Materials -- 10.3.1 Low-Temperature Materials -- 10.3.2 Moderate-Temperature Materials -- 10.3.3 High-Temperature Materials.

10.3.4 Different Temperature Thermoelectric Material Comparison -- 10.4 Thermoelectric Material Processing Methods -- 10.5 Summary -- References -- Chapter 11 Energy Storage and Materials -- 11.1 Energy Storage -- 11.1.1 Stationary Power Storage -- 11.1.2 Mobile Power Storage -- 11.1.3 Energy Storage Range -- 11.1.4 Energy Storage Options -- 11.2 Battery -- 11.2.1 General State and Characteristics -- 11.2.2 Lead-Acid Battery -- 11.2.3 Na-S Battery -- 11.2.4 Ni-Cd Battery -- 11.2.5 Ni-MH Battery -- 11.2.6 Li-Ion Battery -- 11.2.6.1 Fundamental Principles -- 11.2.6.2 Current State -- 11.2.6.3 Cathodes -- 11.2.6.4 Anodes -- 11.2.6.5 Electrolytes -- 11.2.6.6 Separators -- 11.2.6.7 Thin-Film Li-Ion Battery -- 11.2.6.8 Challenges -- 11.2.7 Redox Flow Battery -- 11.2.7.1 Fundamental Principles -- 11.2.7.2 Electrodes -- 11.2.7.3 Electrolytes -- 11.2.7.4 Membranes -- 11.2.7.5 Redox Flow Battery Applications -- 11.3 Electrochemical Capacitors -- 11.3.1 General Features -- 11.3.2 Supercapacitors -- 11.3.2.1 Fundamental Principles -- 11.3.2.2 Electrodes -- 11.3.2.3 Electrolytes -- 11.3.2.4 Supercapacitor Applications -- 11.3.2.5 Advantages and Disadvantages of Supercapacitors -- 11.3.3 Pseudocapacitors -- 11.3.3.1 Metal Oxide Electrodes -- 11.3.3.2 Polymer Electrodes -- 11.3.3.3 Comparison of Different Pseudocapacitors -- 11.4 Li-Ion Capacitors -- 11.5 Summary -- References -- Chapter 12 Hydrogen Storage and Materials -- 12.1 Hydrogen Economy -- 12.2 Hydrogen Storage as High-Pressure Gas -- 12.3 Hydrogen Storage as Liquid -- 12.4 Hydrogen Storage in Hydrides -- 12.4.1 Simple Hydrides -- 12.4.2 Complex Hydrides -- 12.5 Hydrogen Storage in Carbonaceous Materials -- 12.5.1 High Surface Area Carbons -- 12.5.2 Graphite -- 12.5.3 Graphene -- 12.5.4 Carbon Nanotubes -- 12.5.5 Fullerene Materials -- 12.5.6 Carbon Nitrides.

12.6 Hydrogen Storage in Zeolites and Glass Microspheres.
Abstract:
First authored book to address materials' role in the quest for the next generation of energy materials Energy balance, efficiency, sustainability, and so on, are some of many facets of energy challenges covered in current research. However, there has not been a monograph that directly covers a spectrum of materials issues in the context of energy conversion, harvesting and storage. Addressing one of the most pressing problems of our time, Materials in Energy Conversion, Harvesting, and Storage illuminates the roles and performance requirements of materials in energy and demonstrates why energy materials are as critical and far-reaching as energy itself. Each chapter starts out by explaining the role of a specific energy process in today's energy landscape, followed by explanation of the fundamental energy conversion, harvesting, and storage processes. Well-researched and coherently written, Materials in Energy Conversion, Harvesting, and Storage covers: The availability, accessibility, and affordability of different energy sources Energy production processes involving material uses and performance requirements in fossil, nuclear, solar, bio, wind, hydrothermal, geothermal, and ocean energy systems Issues of materials science in energy conversion systems Issues of energy harvesting and storage (including hydrogen storage) and materials needs Throughout the book, illustrations and images clarify and simplify core concepts, techniques, and processes. References at the end of each chapter serve as a gateway to the primary literature in the field. All chapters are self-contained units, enabling instructors to easily adapt this book for coursework. This book is suitable for students and professors in science and engineering who look to obtain comprehensive understanding of different energy processes and materials issues. In setting forth the

latest advances and new frontiers of research, experienced materials researchers and engineers can utilize it as a comprehensive energy material reference book.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: