Fundamentals of Optical Waveguides.
tarafından
 
Okamoto, Katsunari.

Başlık
Fundamentals of Optical Waveguides.

Yazar
Okamoto, Katsunari.

ISBN
9780080455068

Yazar Ek Girişi
Okamoto, Katsunari.

Basım Bilgisi
2nd ed.

Fiziksel Tanımlama
1 online resource (578 pages)

İçerik
front cover -- copyright -- table of contents -- front matter -- Preface to the First Edition -- Preface to the Second Edition -- body -- 1 Wave Theory of Optical Waveguides -- 1.1. WAVEGUIDE STRUCTURE -- 1.2. FORMATION OF GUIDED MODES -- 1.3. MAXWELL'S EQUATIONS -- 1.4. PROPAGATING POWER -- Chapter 1 REFERENCES -- 2 Planar Optical Waveguides -- 2.1. SLAB WAVEGUIDES -- 2.1.1. Derivation of Basic Equations -- 2.1.2. Dispersion Equations for TE and TM Modes -- 2.1.3. Computation of Propagation Constant -- 2.1.4. Electric Field Distribution -- 2.1.5. Dispersion Equation for TM Mode -- 2.2. RECTANGULAR WAVEGUIDES -- 2.2.1. Basic Equations -- 2.2.2. Dispersion Equations for Expq and Eypq Modes -- 2.2.3. Kumar's Method -- 2.2.4. Effective Index Method -- 2.3. RADIATION FIELD FROM WAVEGUIDE -- 2.3.1. Fresnel and Fraunhofer Regions -- 2.3.2. Radiation Pattern of Gaussian Beam -- 2.4. MULTIMODE INTERFERENCE (MMI) DEVICE -- Chapter 2 REFERENCES -- 3 Optical Fibers -- 3.1. BASIC EQUATIONS -- 3.2. WAVE THEORY OF STEP-INDEX FIBERS -- 3.2.1. TE Modes -- 3.2.2. TM Modes -- 3.2.3. Hybrid Modes -- 3.3. OPTICAL POWER CARRIED BY EACH MODE -- 3.3.1. TE Modes -- 3.3.2. TM Modes -- 3.3.3. Hybrid Modes -- 3.4. LINEARLY POLARIZED (LP) MODES -- 3.4.1. Unified Dispersion Equation for LP Modes -- 3.4.2. Dispersion Characteristics of LP Modes -- 3.4.3. Propagating Power of LP Modes -- 3.5. FUNDAMENTAL HE11 MODE -- 3.6. DISPERSION CHARACTERISTICS OF STEP-INDEX FIBERS -- 3.6.1. Signal Distortion Caused by Group Velocity Dispersion -- 3.6.2. Mechanisms Causing Dispersion -- 3.6.3. Derivation of Delay-time Formula -- 3.6.4. Chromatic Dispersion -- 3.6.5. Zero-dispersion Wavelength -- 3.7. WAVE THEORY OF GRADED-INDEX FIBERS -- 3.7.1. Basic Equations and Mode Concepts in Graded- index Fibers -- 3.7.2. Analysis of Graded-index Fibers by the WKB Method.
 
3.7.3. Dispersion Characteristics of Graded-index Fibers -- 3.8. RELATION BETWEEN DISPERSION AND TRANSMISSION CAPACITY -- 3.8.1. Multimode Fiber -- 3.8.2. Single-mode Fiber -- 3.9. BIREFRINGENT OPTICAL FIBERS -- 3.9.1. Two Orthogonally-polarized Modes in Nominally Single-mode Fibers -- 3.9.2. Derivation of Basic Equations -- 3.9.3. Elliptical-core Fibers -- 3.9.4. Modal Birefringence -- 3.9.5. Polarization Mode Dispersion -- 3.10. DISPERSION CONTROL IN SINGLE-MODE OPTICAL FIBERS -- 3.10.1. Dispersion Compensating Fibers -- 3.10.2. Dispersion-shifted Fibers -- 3.10.3. Dispersion Flattened Fibers -- 3.10.4. Broadly Dispersion Compensating Fibers -- 3.11. PHOTONIC CRYSTAL FIBERS -- Appendix 3A Vector wave equations in graded-index fibers -- Appendix 3B Derivation of equation (3.219) -- Chapter 3 REFERENCES -- 4 Coupled Mode Theory -- 4.1. DERIVATION OF COUPLED MODE EQUATIONS BASED ON PERTURBATION THEORY -- 4.2. CODIRECTIONAL COUPLERS -- 4.3. CONTRADIRECTIONAL COUPLING IN CORRUGATED WAVEGUIDES -- 4.3.1. Transmission and Reflection Characteristics in Uniform Gratings -- 4.3.2. Phase-shift Grating -- 4.4. DERIVATION OF COUPLING COEFFICIENTS -- 4.4.1. Coupling Coefficients for Slab Waveguides -- 4.4.2. Coupling Coefficients for Rectangular Waveguides -- 4.4.3. Derivation of Coupling Coefficients Based on Mode Interference -- 4.4.4. Coupling Coefficients for Optical Fibers -- 4.4.5. Coupling Coefficients for Corrugated Waveguides -- 4.5. OPTICAL WAVEGUIDE DEVICES USING DIRECTIONAL COUPLERS -- 4.5.1. Mach-Zehnder Interferometers -- 4.5.2. Ring Resonators -- 4.5.3. Bistable Devices -- 4.6. FIBER BRAGG GRATINGS -- Appendix 4A Derivation of Equations (4.8) and (4.9) -- Appendix 4B Exact Solutions for the Coupled Mode Equations ( 4.26) and ( 4.27) -- Chapter 4 REFERENCES -- 5 Nonlinear Optical Effects in Optical Fibers.
 
5.1. FIGURE OF MERIT FOR NONLINEAR EFFECTS -- 5.2. OPTICAL KERR EFFECT -- 5.2.1. Self-phase Modulation -- 5.2.2. Nonlinear Schrödinger Equation -- 5.3. OPTICAL SOLITONS -- 5.3.1. Fundamental and Higher-Order Solitons -- 5.3.2. Fiber Loss Compensation by Optical Amplification -- 5.3.3. Modulational Instability -- 5.3.4. Dark Solitons -- 5.4. OPTICAL PULSE COMPRESSION -- 5.5. LIGHT SCATTERING IN ISOTROPIC MEDIA -- 5.5.1. Vibration of One-Dimensional Lattice -- 5.5.2. Selection Rules for Light Scattering by Phonons -- 5.6. STIMULATED RAMAN SCATTERING -- 5.7. STIMULATED BRILLOUIN SCATTERING -- 5.8. SECOND-HARMONIC GENERATION -- 5.9. ERBIUM-DOPED FIBER AMPLIFIER -- 5.10. FOUR-WAVE MIXING IN OPTICAL FIBER -- Chapter 5 REFERENCES -- 6 Finite Element Method -- 6.1. INTRODUCTION -- 6.2. FINITE ELEMENT METHOD ANALYSIS OF SLAB WAVEGUIDES -- 6.2.1. Variational Formulation -- 6.2.2. Discretization of the Functional -- 6.2.3. Dispersion Equation Based on the Stationary Condition -- 6.2.4. Dispersion Characteristics of Graded-index Slab Waveguides -- 6.3. FINITE ELEMENT METHOD ANALYSIS OF OPTICAL FIBERS -- 6.3.1. Variational Formulation -- 6.3.2. Discretization of the Functional -- 6.3.3. Dispersion Equation Based on the Stationary Condition -- 6.3.4. Single-mode Conditions of Graded-index Fibers -- 6.3.5. Variational Expression for the Delay Time -- 6.4. FINITE ELEMENT METHOD ANALYSIS OF RECTANGULAR WAVEGUIDES -- 6.4.1. Vector and Scalar Analyses -- 6.4.2. Variational Formulation and Discretization into Finite Number of Elements -- 6.4.3. Dispersion Equation Based on the Stationary Condition -- 6.5. STRESS ANALYSIS OF OPTICAL WAVEGUIDES -- 6.5.1. Energy Principle -- 6.5.2. Plane Strain and Plane Stress -- 6.5.3. Basic Equations for Displacement, Strain and Stress -- 6.5.4. Formulation of the Total Potential Energy.
 
6.5.5. Solution of the Problem by the Stationary Condition -- 6.5.6. Combination of Finite-Element Waveguide and Stress Analysis -- 6.6. SEMI-VECTOR FEM ANALYSIS OF HIGH-INDEX CONTRAST WAVEGUIDES -- 6.6.1. E-field Formulation -- 6.6.2. H-field Formulation -- 6.6.3. Steady State Mode Analysis -- 6A Derivation of Equation (6.59) -- 6B Proof of Equation (6.66) -- Chapter 6 REFERENCES -- 7 Beam Propagation Method -- 7.1. BASIC EQUATIONS FOR BEAM PROPAGATION METHOD BASED ON THE FFT -- 7.1.1. Wave Propagation in Optical Waveguides -- 7.1.2. Pulse Propagation in Optical Fibers -- 7.2. FFTBPM ANALYSIS OF OPTICAL WAVE PROPAGATION -- 7.2.1. Formal Solution Using Operators -- 7.2.2. Concrete Numerical Procedures Using Split-step Fourier Algorithm -- 7.3. FFTBPM ANALYSIS OF OPTICAL PULSE PROPAGATION -- 7.4. DISCRETE FOURIER TRANSFORM -- 7.5. FAST FOURIER TRANSFORM -- 7.6. FORMULATION OF NUMERICAL PROCEDURES USING DISCRETE FOURIER TRANSFORM -- 7.7. APPLICATIONS OF FFTBPM -- 7.8. FINITE DIFFERENCE METHOD ANALYSIS OF PLANAR OPTICAL WAVEGUIDES -- 7.8.1. Derivation of Basic Equations -- 7.8.2. Transparent Boundary Conditions -- 7.8.3. Solution of Tri-diagonal Equations -- 7.9. FDMBPM ANALYSIS OF RECTANGULAR WAVEGUIDES -- 7.10. FDMBPM ANALYSIS OF OPTICAL PULSE PROPAGATION -- 7.11. SEMI-VECTOR FDMBPM ANALYSIS OF HIGH- INDEX CONTRAST WAVEGUIDES -- 7.11.1. Quasi-TE Modes -- 7.11.2. Quasi-TM Modes -- 7.11.3. Polarization Splitter Using Silicon-on-Insulator (SOI) Waveguide -- 7.12. FINITE DIFFERENCE TIME DOMAIN (FDTD) METHOD -- Chapter 7 REFERENCES -- 8 Staircase Concatenation Method -- 8.1. STAIRCASE APPROXIMATION OF WAVEGUIDE BOUNDARY -- 8.2. AMPLITUDES AND PHASES BETWEEN THE CONNECTING INTERFACES -- 8.3. WAVELENGTH DIVISION MULTIPLEXING COUPLERS -- 8.4. WAVELENGTH-FLATTENED COUPLERS -- Chapter 8 REFERENCES -- 9 Planar Lightwave Circuits -- 9.1. WAVEGUIDE FABRICATION.
 
9.2. N×N STAR COUPLER -- 9.3. ARRAYED-WAVEGUIDE GRATING -- 9.3.1. Principle of Operation and Fundamental Characteristics -- 9.3.2. Analytical Treatment of AWG Demultiplexing Properties -- 9.3.3. Waveguide Layout of AWG -- 9.3.4. Gaussian Spectral Response AWG -- 9.3.5. Polarization Dependence of Pass Wavelength -- 9.3.6. Vernier Technique for the Center Wavelength Adjustment -- 9.4. CROSSTALK AND DISPERSION CHARACTERISTICS OF AWGs -- 9.4.1. Crosstalk of AWGs -- 9.4.2. Dispersion Characteristics of AWGs -- 9.5. FUNCTIONAL AWGs -- 9.5.1. Flat Spectral Response AWG -- 9.5.2. Loss Reduction in AWG -- 9.5.3. Unequal Channel Spacing AWG -- 9.5.4. Variable Bandwidth AWG -- 9.5.5. Uniform-loss and Cyclic-frequency (ULCF) AWG -- 9.5.6. Athermal (Temperature Insensitive) AWG -- 9.5.7. Multiwavelength Simultaneous Monitoring Device Using AWG -- 9.5.8. Phase Error Compensation of AWG -- 9.5.9. Tandem AWG Configuration -- 9.6. RECONFIGURABLE OPTICAL ADD/DROP MULTIPLEXER (ROADM) -- 9.7. N×N MATRIX SWITCHES -- 9.8. LATTICE-FORM PROGRAMMABLE DISPERSION EQUALIZERS -- 9.9. TEMPORAL PULSE WAVEFORM SHAPERS -- 9.10. COHERENT OPTICAL TRANSVERSAL FILTERS -- 9.11. OPTICAL LABEL RECOGNITION CIRCUIT FOR PHOTONIC LABEL SWITCH ROUTER -- 9.12. POLARIZATION MODE DISPERSION COMPENSATOR -- 9.13. HYBRID INTEGRATION TECHNOLOGY USING PLC PLATFORMS -- Chapter 9 REFERENCES -- 10 Several Important Theorems and Formulas -- 10.1. GAUSS'S THEOREM -- 10.2. GREEN'S THEOREM -- 10.3. STOKES' THEOREM -- 10.4. INTEGRAL THEOREM OF HELMHOLTZ AND KIRCHHOFF -- 10.5. FRESNEL-KIRCHHOFF DIFFRACTION FORMULA -- 10.6. FORMULAS FOR VECTOR ANALYSIS -- 10.7. FORMULAS IN CYLINDRICAL AND SPHERICAL COORDINATES -- 10.7.1. Cylindrical Coordinates -- 10.7.2. Spherical Coordinates -- Chapter 10 REFERENCES -- Index.

Özet
Fundamentals of Optical Waveguides is an essential resource for any researcher, professional or student involved in optics and communications engineering. Any reader interested in designing or actively working with optical devices must have a firm grasp of the principles of lightwave propagation. Katsunari Okamoto has presented this difficult technology clearly and concisely with several illustrations and equations. Optical theory encompassed in this reference includes coupled mode theory, nonlinear optical effects, finite element method, beam propagation method, staircase concatenation method, along with several central theorems and formulas. Since the publication of the well-received first edition of this book, planar lightwave circuits and photonic crystal fibers have fully matured. With this second edition the advances of these fibers along with other improvements on existing optical technologies are completely detailed. This comprehensive volume enables readers to fully analyze, design and simulate optical atmospheres. * Exceptional new chapter on Arrayed-Waveguide Grating (AWG) * In depth discussion of Photonic Crystal Fibers (PCFs) * Thorough explanation of Multimode Interference Devices (MMI) * Full coverage of polarization Mode Dispersion (PMD).

Notlar
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

Konu Başlığı
Integrated optics.
 
Optical wave guides.
 
Optical wave guides.Integrated optics.

Tür
Electronic books.

Elektronik Erişim
Click to View


LibraryMateryal TürüDemirbaş NumarasıYer NumarasıDurumu/İade Tarihi
IYTE LibraryE-Kitap1187487-1001TA1800 .O37 2006 EBEbrary E-Books