Log-Gases and Random Matrices (LMS-34).
tarafından
Forrester, Peter J.
Başlık
:
Log-Gases and Random Matrices (LMS-34).
Yazar
:
Forrester, Peter J.
ISBN
:
9781400835416
Yazar Ek Girişi
:
Forrester, Peter J.
Fiziksel Tanımlama
:
1 online resource (806 pages)
Seri
:
London Mathematical Society Monographs
İçerik
:
Cover -- Title -- Copyright -- Preface -- Contents -- Chapter 1. Gaussian matrix ensembles -- 1.1 Random real symmetric matrices -- 1.2 The eigenvalue p.d.f. for the GOE -- 1.3 Random complex Hermitian and quaternion real Hermitian matrices -- 1.4 Coulomb gas analogy -- 1.5 High-dimensional random energy landscapes -- 1.6 Matrix integrals and combinatorics -- 1.7 Convergence -- 1.8 The shifted mean Gaussian ensembles -- 1.9 Gaussian β-ensemble -- Chapter 2. Circular ensembles -- 2.1 Scattering matrices and Floquet operators -- 2.2 Definitions and basic properties -- 2.3 The elements of a random unitary matrix -- 2.4 Poisson kernel -- 2.5 Cauchy ensemble -- 2.6 Orthogonal and symplectic unitary random matrices -- 2.7 Log-gas systems with periodic boundary conditions -- 2.8 Circular β-ensemble -- 2.9 Real orthogonal β-ensemble -- Chapter 3. Laguerre and Jacobi ensembles -- 3.1 Chiral random matrices -- 3.2 Wishart matrices -- 3.3 Further examples of the Laguerre ensemble in quantum mechanics -- 3.4 The eigenvalue density -- 3.5 Correlated Wishart matrices -- 3.6 Jacobi ensemble and Wishart matrices -- 3.7 Jacobi ensemble and symmetric spaces -- 3.8 Jacobi ensemble and quantum conductance -- 3.9 A circular Jacobi ensemble -- 3.10 Laguerre β-ensemble -- 3.11 Jacobi β-ensemble -- 3.12 Circular Jacobi β-ensemble -- Chapter 4. The Selberg integral -- 4.1 Selberg's derivation -- 4.2 Anderson's derivation -- 4.3 Consequences for the β-ensembles -- 4.4 Generalization of the Dixon-Anderson integral -- 4.5 Dotsenko and Fateev's derivation -- 4.6 Aomoto's derivation -- 4.7 Normalization of the eigenvalue p.d.f.'s -- 4.8 Free energy -- Chapter 5. Correlation functions at β = 2 -- 5.1 Successive integrations -- 5.2 Functional differentiation and integral equation approaches -- 5.3 Ratios of characteristic polynomials -- 5.4 The classical weights.
5.5 Circular ensembles and the classical groups -- 5.6 Log-gas systems with periodic boundary conditions -- 5.7 Partition function in the case of a general potential -- 5.8 Biorthogonal structures -- 5.9 Determinantal k-component systems -- Chapter 6. Correlation functions at β = 1 and 4 -- 6.1 Correlation functions at β = 4 -- 6.2 Construction of the skew orthogonal polynomials at β = 4 -- 6.3 Correlation functions at β = 1 -- 6.4 Construction of the skew orthogonal polynomials and summation formulas -- 6.5 Alternate correlations at β = 1 -- 6.6 Superimposed β = 1 systems -- 6.7 A two-component log-gas with charge ratio 1:2 -- Chapter 7. Scaled limits at β = 1, 2 and 4 -- 7.1 Scaled limits at β = 2 - Gaussian ensembles -- 7.2 Scaled limits at β = 2 - Laguerre and Jacobi ensembles -- 7.3 Log-gas systems with periodic boundary conditions -- 7.4 Asymptotic behavior of the one- and two-point functions at β = 2 -- 7.5 Bulk scaling and the zeros of the Riemann zeta function -- 7.6 Scaled limits at β = 4 - Gaussian ensemble -- 7.7 Scaled limits at β = 4 - Laguerre and Jacobi ensembles -- 7.8 Scaled limits at β = 1 - Gaussian ensemble -- 7.9 Scaled limits at β = 1 - Laguerre and Jacobi ensembles -- 7.10 Two-component log-gas with charge ratio 1:2 -- Chapter 8. Eigenvalue probabilities - Painlevé systems approach -- 8.1 Definitions -- 8.2 Hamiltonian formulation of the Painlevé theory -- 8.3 σ-form Painlevé equation characterizations -- 8.4 The cases β = 1 and 4 - circular ensembles and bulk -- 8.5 Discrete Painlevé equations -- 8.6 Orthogonal polynomial approach -- Chapter 9. Eigenvalue probabilities - Fredholm determinant approach -- 9.1 Fredholm determinants -- 9.2 Numerical computations using Fredholm determinants -- 9.3 The sine kernel -- 9.4 The Airy kernel -- 9.5 Bessel kernels -- 9.6 Eigenvalue expansions for gap probabilities.
9.7 The probabilities E[sub(β)][sup(soft)] (n -- (s, ∞)) for β = 1, 4 -- 9.8 The probabilities E[sub(β)][sup(hard)] ( n -- (0, s) -- a) for β = 1, 4 -- 9.9 Riemann-Hilbert viewpoint -- 9.10 Nonlinear equations from the Virasoro constraints -- Chapter 10. Lattice paths and growth models -- 10.1 Counting formulas for directed nonintersecting paths -- 10.2 Dimers and tilings -- 10.3 Discrete polynuclear growth model -- 10.4 Further interpretations and variants of the RSK correspondence -- 10.5 Symmetrized growth models -- 10.6 The Hammersley process -- 10.7 Symmetrized permutation matrices -- 10.8 Gap probabilities and scaled limits -- 10.9 Hammersley process with sources on the boundary -- Chapter 11. The Calogero-Sutherland model -- 11.1 Shifted mean parameter-dependent Gaussian random matrices -- 11.2 Other parameter-dependent ensembles -- 11.3 The Calogero-Sutherland quantum systems -- 11.4 The Schrödinger operators with exchange terms -- 11.5 The operators H[sup((H, Ex))], H[sup((L, Ex))] and H[sup((J, Ex))] -- 11.6 Dynamical correlations for β = 2 -- 11.7 Scaled limits -- Chapter 12. Jack polynomials -- 12.1 Nonsymmetric Jack polynomials -- 12.2 Recurrence relations -- 12.3 Application of the recurrences -- 12.4 A generalized binomial theorem and an integration formula -- 12.5 Interpolation nonsymmetric Jack polynomials -- 12.6 The symmetric Jack polynomials -- 12.7 Interpolation symmetric Jack polynomials -- 12.8 Pieri formulas -- Chapter 13. Correlations for general β -- 13.1 Hypergeometric functions and Selberg correlation integrals -- 13.2 Correlations at even β -- 13.3 Generalized classical polynomials -- 13.4 Green functions and zonal polynomials -- 13.5 Inter-relations for spacing distributions -- 13.6 Stochastic differential equations -- 13.7 Dynamical correlations in the circular β ensemble.
Chapter 14. Fluctuation formulas and universal behavior of correlations -- 14.1 Perfect screening -- 14.2 Macroscopic balance and density -- 14.3 Variance of a linear statistic -- 14.4 Gaussian fluctuations of a linear statistic -- 14.5 Charge and potential fluctuations -- 14.6 Asymptotic properties of E[sub(β)](n -- J) and P[sub(β)](n -- J) -- 14.7 Dynamical correlations -- Chapter 15. The two-dimensional one-component plasma -- 15.1 Complex random matrices and polynomials -- 15.2 Quantum particles in a magnetic field -- 15.3 Correlation functions -- 15.4 General properties of the correlations and fluctuation formulas -- 15.5 Spacing distributions -- 15.6 The sphere -- 15.7 The pseudosphere -- 15.8 Metallic boundary conditions -- 15.9 Antimetallic boundary conditions -- 15.10 Eigenvalues of real random matrices -- 15.11 Classification of non-Hermitian random matrices -- Bibliography -- Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- J -- K -- L -- M -- N -- O -- P -- Q -- R -- S -- T -- U -- V -- W -- Z.
Özet
:
Random matrix theory, both as an application and as a theory, has evolved rapidly over the past fifteen years. Log-Gases and Random Matrices gives a comprehensive account of these developments, emphasizing log-gases as a physical picture and heuristic, as well as covering topics such as beta ensembles and Jack polynomials. Peter Forrester presents an encyclopedic development of log-gases and random matrices viewed as examples of integrable or exactly solvable systems. Forrester develops not only the application and theory of Gaussian and circular ensembles of classical random matrix theory, but also of the Laguerre and Jacobi ensembles, and their beta extensions. Prominence is given to the computation of a multitude of Jacobians; determinantal point processes and orthogonal polynomials of one variable; the Selberg integral, Jack polynomials, and generalized hypergeometric functions; Painlevé transcendents; macroscopic electrostatistics and asymptotic formulas; nonintersecting paths and models in statistical mechanics; and applications of random matrix theory. This is the first textbook development of both nonsymmetric and symmetric Jack polynomial theory, as well as the connection between Selberg integral theory and beta ensembles. The author provides hundreds of guided exercises and linked topics, making Log-Gases and Random Matrices an indispensable reference work, as well as a learning resource for all students and researchers in the field.
Notlar
:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Konu Başlığı
:
Electronic books. -- local.
Integral theorems.
Jacobi polynomials.
Random matrices.
Tür
:
Electronic books.
Elektronik Erişim
:
Library | Materyal Türü | Demirbaş Numarası | Yer Numarası | Durumu/İade Tarihi |
---|
IYTE Library | E-Kitap | 1217363-1001 | QA188 -- .F656 2010 EB | Ebrary E-Books |