Adsorption of methane reformer off-gas components in a column packed with Cu, Al,Ti and Zn based organic frameworks
Kanatlı, Gaye, author.

Adsorption of methane reformer off-gas components in a column packed with Cu, Al,Ti and Zn based organic frameworks

Kanatlı, Gaye, author.

Yazar Ek Girişi
Kanatlı, Gaye, author.

Fiziksel Tanımlama
xiii, 129 leaves: illustrarions, charts;+ 1 computer laser optical disc

Within the past decade, CO2 emissions from fossil fueled power plants has accelerated rapidly as a result of the increase in energy consumption associated with industrial development all over the world. Beyond the necessity of reduction in CO2 emissions, concerning on the crude oil reserves depletion induced the urgent need of transition to more efficient, renewable, cleaner and cheaper fuel, hydrogen. In the world, most of the hydrogen is produced by hydrogen-rich stream methane reformer (SMR) off gas streams composed of 80-60% H2, 15-25% CO2, 3-6% CH4 and 1-3% CO, thereby separation of SMR components became more of an issue. In this study, adsorption based separation of SMR components were investigated in a column packed with copper (CuTPA, (SLang: 776 m2g-1)), aluminum (AlTPA, (SLang: 1330 m2g-1)), titanium (TiTPA, (SLang: 1835 m2g-1)) and zinc (ZnTPA, (SLang: 1023 m2g-1)) based organic frameworks (MOFs). The pure gas adsorption studies on equimolar CO2/H2, CH4/H2 and CO/H2 systems and the equimolar mixture of CO2/CH4 system were carried out and the experimental breakthrough curves were obtained at three different feed flow rates (10, 20 and 30 mL/min) at three column pressure (1, 5 and 10 bar) at 303 K. The highest adsorption capacities of all MOFs were achieved at 30 mL/min of feed rate and 10 bar operating pressure, at these conditions the non-adsorptive behavior of hydrogen on the aforementioned MOFs was ensured. The amounts of CO2 adsorbed were calculated as 1.61, 5.54, 5.20 and 2.11 mmolCO2/g, while adsorbed CH4 amounts were 1.50, 3.16, 3.25 and 1.90 mmol CH4/g and the adsorbed CO amounts were 1.47, 2.59, 1.91 and 1.83 mmol CO/g on CuTPA, AlTPA, TiTPA and ZnTPA, respectively. The highest selectivity for CO2 over CH4 was attained on TiTPA as 8.0 at 10 mL/min feed rate of CO2/CH4 mixture at atmospheric column pressure and 303 K. The experimental adsorption isotherms of SMR components were fitted well with Langmuir and virial models and the best fitted model parameters were evaluated for each MOF.

Konu Başlığı
Supramolecular organometallic chemistry.
Gases -- Absorption and adsorption.
Gases -- Separation.

Yazar Ek Girişi
Çakıcıoğlu Özkan, Fehime,

Tüzel Kişi Ek Girişi
İzmir Institute of Technology. Chemical Engineering.

Tek Biçim Eser Adı
Thesis (Master)--İzmir Institute of Technology: Chemical Engineering.
İzmir Institute of Technology: Chemical Engineering--Thesis (Master).

Elektronik Erişim
Access to Electronic Versiyon.

KütüphaneMateryal TürüDemirbaş NumarasıYer NumarasıDurumu/İade Tarihi
IYTETezT001552TP242 .K16 2016Tez Koleksiyonu