Detailed chemical kinetic modeling of n-heptane flame
tarafından
 
Değirmenci, Emre, author.

Başlık
Detailed chemical kinetic modeling of n-heptane flame

Yazar
Değirmenci, Emre, author.

Yazar Ek Girişi
Değirmenci, Emre, author.

Fiziksel Tanımlama
xiii, 108 leaves: charts;+ 1 computer laser optical disc.

Özet
To understand the complex combustion characteristics of gasoline, n-heptane is used as one of the two major reference fuels. The emissions resulted from incomplete combustion are one of the main issues caused from usage of high amount of fossil fuels in transportation and energy generation sectors. The main purpose of this study is to model one-dimensional premixed, laminar, burner-stabilized fuel-rich n-heptane flame to understand its combustion characteristics in mainly fuel-rich conditions. Detailed chemical kinetic modeling technique was used to get high amount of information about the ignition characteristics of n-heptane and formation nature of emissions. A detailed chemical kinetic mechanism was generated by combining several mechanisms from the literature that related with possible products of fuel-rich n-heptane combustion. The detailed mechanism consists of 4185 reactions and 893 species. Validations of the model were done with various experimental data available in the literature such as premixed laminar flames and jet stirred reactors. After generating the kinetic model, detailed investigation of the n-heptane flame was done by using rate of production, reaction sensitivity and reaction pathway analyses. One of the attributes of fuel-rich flames, Polycyclic aromatic hydrocarbon (PAH) formation kinetics were also investigated. Acetylene (C2H2), propargyl radical (C3H3), and vinylacetylene (C4H4) were found as the main precursors of the first aromatic ring and PAH formation as a result of pathway and rate of production analyses. The generated model was able to predict most of the major, minor and trace components that formed in the flame that modeled. A reduced model was also generated by using directed relation graph with error propagation (DRGEP) mechanism reduction technique on the detailed mechanism. The reduced mechanism consists of 1879 reactions and 359 species. The species mole fraction predictions of detailed and reduced mechanism were very close to each other. Most of the species formed in the flame were predicted by the reduced mechanism with less computational afford than detailed mechanism.

Konu Başlığı
Chemical reactions.
 
Motor fuels.
 
Combustion.

Yazar Ek Girişi
İnal, Fikret

Tüzel Kişi Ek Girişi
İzmir Institute of Technology. Chemical Engineering.

Tek Biçim Eser Adı
Thesis (Master)--İzmir Institute of Technology: Chemical Engineering.
 
İzmir Institute of Technology: Chemical Engineering--Thesis (Master).

Elektronik Erişim
Access to Electronic Versiyon.


LibraryMateryal TürüDemirbaş NumarasıYer NumarasıDurumu/İade Tarihi
IYTE LibraryTezT001856QD501 .D317 2018Tez Koleksiyonu