Investigation of microbial biofilm formation using electrochemical impedance spectroscopy and equivalent circuit modelling
tarafından
 
Kuş, Anılcan, author.

Başlık
Investigation of microbial biofilm formation using electrochemical impedance spectroscopy and equivalent circuit modelling

Yazar
Kuş, Anılcan, author.

Yazar Ek Girişi
Kuş, Anılcan, author.

Fiziksel Tanımlama
xii, 57 leaves: charts;+ 1 computer laser optical disc

Özet
Bacterial biofilm is like a cooperative form of planktonic bacteria that colonize to acquire more nutritious and become resistant to surroundings. The communal organization results from the connection of bacteria by polysaccharides, lipids, or the extracellular matrix, which can provide a protective environment for living cells and communicate between them or allow specific types of chemicals inside through the matrix. 60%-80% of the infections are known to be biofilm-related. Bacterial biofilms are more resistant to antibiotics, and treating them with the wrong antibiotics might result in a thicker biofilm. In order to overcome these difficulties and researching new treatments for biofilm inflammation understanding the formation process is essential. For this manner, Electrochemical Impedance Spectroscopy (EIS) has potential uses in various fields such as biosensors, corrosion studies, healthcare owing to its facile operation and affordable devices to conduct electroanalysis. EIS calculates the excitation voltage and current generated with the oscillating frequency. Developing impedimetric methods are gaining attention due to the operation being label-free. Considering its labelfree nature, EIS is a possible candidate to explain the electrodynamics of living systems such as cell-matrix interaction, biofilm formation in vitro. Detection of those is essential to prevent infections and to develop medical needs to cure them. The thesis focuses on understanding the electrodynamics of bacterial biofilm formation via electrochemical methods such as square wave voltammetry (SWV), Open Circuit Potential (OCP), and EIS. After carrying out the experiments, time-dependent circuit models for EIS were built, and the data were extracted to demonstrate changes in the bacterial system.

Konu Başlığı
Medical microbiology.
 
Biofilms.

Yazar Ek Girişi
Yıldız, Ümit Hakan,

Tüzel Kişi Ek Girişi
İzmir Institute of Technology. Materials Science and Engineering.

Tek Biçim Eser Adı
Thesis (Master)--İzmir Institute of Technology:Materials Science and Engineering.
 
İzmir Institute of Technology: Materials Science and Engineering--Thesis (Master).

Elektronik Erişim
Access to Electronic Versiyon.


LibraryMateryal TürüDemirbaş NumarasıYer NumarasıDurumu/İade Tarihi
IYTE LibraryTezT002387QR46 .K971 2021Tez Koleksiyonu