Synthesis of indandione-based porous organic polymers and their applications in zinc-ion batteries
tarafından
 
Şimşek, Gizem, author.

Başlık
Synthesis of indandione-based porous organic polymers and their applications in zinc-ion batteries

Yazar
Şimşek, Gizem, author.

Yazar Ek Girişi
Şimşek, Gizem, author.

Fiziksel Tanımlama
ix, 47 leaves: charts;+ 1 computer laser optical disc.

Özet
There has been growing interest in porous organic polymers (POPs) in recent years due to their large surface area, easy chemical tunability, sustainability, and high thermal and chemical stability. Due to their exceptional properties, they are suitable for use as platforms in various applications, including gas storage, separation, catalysis, and, more recently, energy storage systems. In this regard, it is imperative to design new functional POPs with a large surface area, permanent porosity, and physicochemical stability. In this thesis, we have presented indandione-based POPs (r-POPs) prepared by an acid-catalyzed condensation reaction between s-indacene-1,3,5,7(2H,6H)-tetraone and benzene-1,3,5-tricarboxaldehyde under highly environmentally friendly conditions. In order to optimize the reaction conditions, we first synthesized the model compound, namely 2-benzylidene-1H-indene-1,3(2H)-dione. The model compound was characterized by using 1H and 13C-NMR spectroscopy. Using different types of acids, we have investigated the effect of acid on polymerization and its textural properties. The polymers were characterized using various characterization techniques. Due to increased interest in renewable energy as a fossil fuel substitute, energy storage systems have attracted colossal interest, and rechargeable aqueous zinc-ion batteries (ZIBs) are seen as promising energy storage systems, particularly for grid-scale applications. In this respect, the carbonyl-rich structure of r-POPs transforms them into a potential electrode material. Thus, we have also investigated their electrochemical performances as cathode materials for ZIBs. Although r-POPs showed low electrochemical performance in capacity and cycle life, they have great potential to be an electrode material in other metal-ion batteries.

Konu Başlığı
Chemistry, Organic
 
Porous materials.
 
Polymers.

Yazar Ek Girişi
Büyükçakır, Onur,

Tüzel Kişi Ek Girişi
İzmir Institute of Technology. Chemistry.

Tek Biçim Eser Adı
Thesis (Master)--İzmir Institute of Technology:Chemistry.
 
İzmir Institute of Technology:Chemistry --Thesis (Master).

Elektronik Erişim
Access to Electronic Versiyon.


LibraryMateryal TürüDemirbaş NumarasıYer NumarasıDurumu/İade Tarihi
IYTE LibraryTezT002675QD251.3 .S61 2022Tez Koleksiyonu