Layered silicate/polypropylene nanocomposites
tarafından
Işık, Kıvanç.
Başlık
:
Layered silicate/polypropylene nanocomposites
Yazar
:
Işık, Kıvanç.
Yazar Ek Girişi
:
Işık, Kıvanç.
Yayın Bilgileri
:
[s.l.]: [s.n.], 2006.
Fiziksel Tanımlama
:
xi, 80 leaves. : ill.+ 1 computer laser optical disc.
Genel Not
:
Keywords: Materials, polymer composites, polypropylene, clay, nanocomposites.
Özet
:
Layered silicate nanocomposites are new generation materials that have unique properties obtained by low particulate loadings. In this study, layered silicate/polypropylene nanocomposites were prepared by melt intercalation method.Homopolymer PP alone and maleic anhydride-grafted polypropylene (PPgMA) as a compatibilizer were used as the matrix. Clay (Na+ montmorillonite, MMT) particles were used with and without structural modification to obtain silicate nano-layers within the PP matrix. Structural modification of MMT using hexadecyltrimethyl ammonium chloride (HTAC) was applied to obtain organophilic silicates (OMMT). XRD results demonstrated that the dispersion of the modified silicate layers and compatibilized with PPgMA (OMMT/PPgMA) is better than those for incompatibilized compositions. The addition of silicate layers increased the crystallization temperature of PP as well as the thermal stability, but the melting temperature of the nanocomposites was decreased by the addition of silicate as compared with neat PP. The mechanical characterizations exhibited an increase of 62% on tensile modulus and 15% on tensile stress at break as compared to neat PP due to the improved dispersion of silicate layers within PP in 3 wt.% OMMT/PPgMA/PP nanocomposites. The effect of clay modification and PPgMA compatibilization on the light transmission of PP nanocomposites was characterized by optical transmission analysis. For the OMMT/PPgMA/PP nanocomposites, light transmission was improved as the dispersion was enhanced. The flammability results demonstrated that unmodified MMT and modified OMMT decreased the burning rate of PP nanocomposites. The organic modification of clay and compatibilization decreased the rate of flammability. A decrease of 26% on the burning rate of PP was recorded in 10%wt. OMMT/PPgMA/PP nanocomposites.
Konu Başlığı
:
Nanostructured materials
Polymeric composites
Yazar Ek Girişi
:
Tanoğlu, Metin
Tüzel Kişi Ek Girişi
:
İzmir Institute of Technology. Mechanical Engineering.
Tek Biçim Eser Adı
:
Thesis (Master)--İzmir Institute of Technology: Mechanical Engineering.
İzmir Institute of Technology: Mechanical Engineering--Thesis (Master).
Elektronik Erişim
:
Library | Materyal Türü | Demirbaş Numarası | Yer Numarası | Durumu/İade Tarihi |
---|
IYTE Library | Tez | T000532 | TA418.9.N35.I81 2006 | Tez Koleksiyonu |