Skip to:ContentBottom
The effect of T-shaped fin geometries on heat transfer rate enhancement için kapak resmi
The effect of T-shaped fin geometries on heat transfer rate enhancement
The effect of T-shaped fin geometries on heat transfer rate enhancement
Çetin, Eylem, author.
Yazar Ek Girişi:
Fiziksel Tanımlama:
x, 38 leaves:+ 1 computer laser optical disc.
In this study, we show that maximum excess temperature on a heat generating cylindrical solid domain can be minimized with numerically optimized rectangular cavities and T-shaped fins. The effects of the cavities and the fins on heat transfer rate enhancement were compared while their volume fractions in a unit volume element were fixed. Furthermore, the designs correspond to the minimum thermal resistance were uncovered for two types of flows; parallel and cross-flow. The governing equations of the heat transfer and the fluid flow were solved simultaneously in order to show the effects of flow characteristics and the design on the thermal performance. Two-dimensional solution domain was used to uncover the thermal performance in cross-flow case. Because the flow direction is perpendicular to the heat transfer surface area of the heat generating domain. However, three-dimensional domain was used in parallel flow case because the fluid flows along the outer surface of the heat generating domain and the heat transfer surface area. For the cross-flow case, the results show that T-shaped assembly of fins with longer stem and shorter tributaries corresponds to thelower peak temperature. In addition, the results also show that there is an optimal cavityshape that minimizes the peak temperature. This optimal shape becomes thinner when thenumber of the cavities increase. In parallel flow case, fins with thicker and shorter stemand longer tributaries corresponds to the minimum excess temperature. In addition, longand thin cavity shapes increase the thermal performance in parallel flow case.
Yazar Ek Girişi:
Tek Biçim Eser Adı:
Thesis (Master)--İzmir Institute of Technology: Mechanical Engineering.

İzmir Institute of Technology:Mechanical Engineering--Thesis (Master).
Elektronik Erişim:
Access to Electronic Versiyon.
Ayırtma: Copies: