The investigation of blast response of sandwich panels with bio-inspired cores için kapak resmi
The investigation of blast response of sandwich panels with bio-inspired cores
Tüzgel, Fırat, author.
Yazar Ek Girişi:
Fiziksel Tanımlama:
xiii, 104 leaves: illustrarions, charts;+ 1 computer laser optical disc.
In this thesis, blast response of sandwich structures with bio-inspired cores having applicable potential for protection against blast loading, balanus, were investigated in detail. The proposed geometry consists of outer shell and inner core which separately manufactured using deep-drawing method. Commonly used blast simulation methods which are pure Lagrangian, Arbitrary Lagrangian Eulerian (ALE), and hybrid (coupled other two approaches) approaches were comparatively investigated as finding their main outstanding features and drawbacks after investigation of blast phenomenon. Calibration study with facesheet of sandwich structure was conducted to demonstrate practically performance of blast simulation methods and tune essential parameters. Well proximity between results was obtained in calibration study. Converge analysis which is especially mandatory in ALE approach was also implemented employing Grid Converge Index (GCI) for selection of mesh density of air and plate in calibration study. Pure Lagrangian approach is conservative approach among the studied blast simulation methods was shown. Direct Pressure Pulse (DPP) experiments were separately conducted for facesheets of sandwich and complete sandwich structures to reveal dynamic performance of them. Equivalent blast loading conditions corresponding to each DPP experiment were found as considering deformation levels of the structures. Therefore, DPP experiment as lab-scale experiment effectively mimicked blast-type loading was revealed. Effect of heat treatment and placement of proposed geometries subjected to blast loading were also examined creating large scaled sandwich structures. Finally, it was demonstrated sandwich structure with balanus cores revealed good blast mitigation performance even at low-scaled distance and would be able to satisfied requirement of defence industry.
Yazar Ek Girişi:
Tek Biçim Eser Adı:
Thesis (Master)--İzmir Institute of Technology: Mechanical Engineering.

İzmir Institute of Technology: Mechanical Engineering--Thesis (Master).
Elektronik Erişim:
Access to Electronic Versiyon.


Materyal Türü
Demirbaş Numarası
Yer Numarası
Durumu/İade Tarihi
Tez T001609 TA492.S25 T96 2017

On Order