Skip to:ContentBottom
Sericin-polymer conjugates: Preparation and physicochemical characterization için kapak resmi
Sericin-polymer conjugates: Preparation and physicochemical characterization
Sericin-polymer conjugates: Preparation and physicochemical characterization
Gül, Abdülkadir, author.
Yazar Ek Girişi:
Fiziksel Tanımlama:
xii, 71 leaves: illustrarions, charts;+ 1 computer laser optical disc.
Sericin is a protein derived from silkworm, Bombyx mori, and has several useful properties as a natural biomaterial such as antioxidant character, moisturizing ability, hydrogel forming property and most importantly immunogenic inertness. The aim of this thesis is to prepare and physicochemically characterize sericin-polymer conjugates as potential natural-synthetic hybrid biomaterials with enhanced properties for drug delivery and tissue engineering applications. For this purpose, three polymers having the same degree of polymerization (n~42) and varying chemical nature, i.e. poly(oligoethylene glycol methacrylate), P(OEGMA) hydrophilic and neutral, poly(hydroxyethylmethacrylate) P(HEMA) less hydrophilic and neutral, and poly(dimethylaminoethyl methacrylate) P(DMAEMA) hydrophilic and cationic after quaternization, were first synthesized via reversible addition fragmentation chain transfer (RAFT) polymerization. Each polymer was characterized via nuclear magnetic resonance (1H-NMR) and gel permeation chromatography (GPC). Separately, molecular weight and isoelectric point of sericin were characterized using various techniques including Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) and High-Resolution Two-Dimensional Polyacrylamide Gel Electrophoresis (2D-PAGE). Polymers were then covalently conjugated to sericin using NHS/EDC chemistry. The conjugates were characterized using SDS-PAGE, GPC and DLS (Dynamic Light Scattering). The SDS-PAGE and GPC results showed the successful preparation of the conjugates. DLS revealed that the hydrodynamic size of P(OEGMA) and P(DMAEMA) polymers and their conjugates were between 1 and 10 nm as they are soluble in PBS and do not form aggregates. Unlike the other two polymers, although the size of P(HEMA) polymer was observed to be 3.24 ± 0.62 nm, the DLS measurements of P(HEMA) conjugates indicated the presence of self-organization and aggregation of Sericin-P(HEMA) conjugates in aqeuous solution. Consequently, the size of sericin-P(HEMA) conjugates were found to be 530 ± 60.83 and 223.3 ± 25.2, respectively.
Yazar Ek Girişi:
Tek Biçim Eser Adı:
Thesis (Master)--İzmir Institute of Technology: Biotechnology

İzmir Institute of Technology: Biotechnology--Thesis (Master).
Elektronik Erişim:
Access to Electronic Versiyon.
Ayırtma: Copies: