Digital font generation using long short-term memory networks için kapak resmi
Digital font generation using long short-term memory networks
Temizkan, Onur, author.
Yazar Ek Girişi:
Fiziksel Tanımlama:
xii, 55 leaves:+ 1 computer laser optical disc.
Long Short-Term Memory (LSTM) Networks are powerful models to solve sequential problems in machine learning. Apart from their use on sequence classification, LSTMs are also used for sequence prediction. Predictive features of LSTMs have been used extensively to generate handwriting, music and several other types of sequences. Configuration and training of LSTM networks are relatively more arduous than non-sequential models, especially when input data is complex. In this research, the aim is to train LSTM networks and its different variations, use their generative features on a relatively obscure and complex type of sequences in machine learning; digital fonts. Controlled experiments have been performed to find the effects of different model parameters, input encodings or network architectures on learning font based sequences. All in all, in this document; the procedure of creating a dataset from digital fonts are provided, training strategies are demonstrated and the generative results are discussed.
Yazar Ek Girişi:
Tek Biçim Eser Adı:
Thesis (Master)--İzmir Institute of Technology: Computer Engineering.

İzmir Institute of Technology: Computer Engineering--Thesis (Master).
Elektronik Erişim:
Access to Electronic Versiyon.


Materyal Türü
Demirbaş Numarası
Yer Numarası
Durumu/İade Tarihi
Tez T002010 QA76.87 .T279 2019

On Order