Dynamic crushing behaviour of cactus geometry inspired core structure için kapak resmi
Dynamic crushing behaviour of cactus geometry inspired core structure
Balya, Ozan, author.
Yazar Ek Girişi:
Fiziksel Tanımlama:
xiii, 81 leaves: illustrarions, charts;+ 1 computer laser optical disc.
Cactus geometry inspired core structure was manufactured with the fused deposition modelling method by a 3D printer using Acrylonitrile Butadiene Styrene (ABS) material filament. The characterization of ABS was made by performing compression tests to take some parameters for numerical models. Numerical preliminary studies were carried out by using the areal density concept and direct-impact Hopkinson pressure bar test method to compare the cactus geometry with the conventional ones in point of the specific energy absorption capacity (SEA). It was understood that from the preliminary work, the cactus inspired structure is intriguing to investigate the dynamic crushing behaviour at least. Quasi-static, drop weight and direct-impact Hopkinson pressure bar tests were conducted to comprehend the energy absorption and crushing behavior in all cases, then to investigate the strain rate and inertia effects on the structure. Implicit and explicit numerical models were made by using LS-DYNA software to validate experiments and to set a precedent for future works. It was seen that the result of numerical models is in harmony with that of experiments excluding the non-fracture structure at the quasi-static implicit model. Moreover, although quasi-static compression gave the structure more stable deformation behavior compared to drop weight impact, higher energy absorption capability was observed on drop-weight tests. In addition, the strain rate effect is more forceful in point of loading carrying capacity compared to the inertia effect despite the fact that it provides the development of buckling and damage formation.
Konu Başlığı:
Yazar Ek Girişi:
Tek Biçim Eser Adı:
Thesis (Master)--İzmir Institute of Technology: Mechanical Engineering.

İzmir Institute of Technology: Mechanical Engineering--Thesis (Master).
Elektronik Erişim:
Access to Electronic Versiyon.


Materyal Türü
Demirbaş Numarası
Yer Numarası
Durumu/İade Tarihi
Tez T002125 TJ145 .B198 2019

On Order