Enhancement of ballistic properties by hybridization method of multi-layered composite panels için kapak resmi
Enhancement of ballistic properties by hybridization method of multi-layered composite panels
Başlık:
Enhancement of ballistic properties by hybridization method of multi-layered composite panels
Yazar:
Üstün, Hikmet Sinan, author.
Fiziksel Tanımlama:
xii, 88 leaves: color illustraltions, charts;+ 1 computer laser optical disc.
Özet:
High performance fiber reinforced composite structures are used for ballistic applications in recent years due to several advantages lightweight, high strength and high energy absorbing capability. In this regard, it is aimed to enhance ballistic performance of fiber reinforced composites by hybridization method in this thesis. Two of most used fiber types were selected as reinforcement which are E-Glass and Aramid fibers. As matrix epoxy resin was used. Homogeneous and hybrid structures were manufactured. In hybrid structures configuration was arranged as E-Glass layers are at the front and Aramid layers are at the back. Two different hybrid composites were manufactured with 50:50 and 70:30 Aramid and E-Glass layers. The effect of volume fraction of fabric layers on ballistic properties was investigated. Since there is a linear relationship between V50 and thickness, composite structures were manufactured with two different thicknesses and by the equation derived V50 values for different thicknesses could be determined. Mechanical and ballistic tests were carried out in the study. Tensile, 3-Point bending and short beam strength tests were applied as mechanical tests and a V50 test was carried out as ballistic test. Composite structures were compared with each other based on test results. Consequently, it was found that hybridization method increased mechanical and ballistic properties. Mass efficiency of hybrid structures were found to be higher than 1 (E-Glass composite was used as reference). It was also found that presence of E-Glass layers assists aramid structures to experience more delamination during impact and therefore increased energy absorbing capability.
Yazar Ek Girişi:
Tek Biçim Eser Adı:
Thesis (Master)--İzmir Institute of Technology:Mechanical Engineering.

İzmir Institute of Technology: Mechanical Engineering --Thesis (Master).
Elektronik Erişim:
Access to Electronic Versiyon.
Ayırtma: Copies: