Process parameters and mechanical properties of geopolymer glass foam structures için kapak resmi
Process parameters and mechanical properties of geopolymer glass foam structures
Polat, Dilan, author.
Yazar Ek Girişi:
Fiziksel Tanımlama:
x, 80 leaves: color illustraltions, charts;+ 1 computer laser optical disc.
The effects of waste-glass powder particle size (23 and 72 μm), solid/liquid ratio (S/L=1, 1.5 and 2) and aluminum foaming agent content (2-20 wt%) on the expansion behavior of geopolymer slurries were investigated experimentally. Geopolymer slurries were prepared using an activation solution of NaOH (8M) and sodium silicate (10% NaOH, 27% SiO2). The expansions and temperatures of the slurries were measured in-situ using a laser distance meter and a thermocouple, respectively. Few geopolymer foams were sintered at 600, 700, 725 and 750 °C. The compression strengths and thermal conductivities of foam samples were also determined. The expansion of slurries continued until the temperature increased to 85-90 °C. At this temperature, the slurry evaporation; hence, increased S/L ratio limited both the hydrogen release rate and geopolymerization reaction. As the content of Al increased, the final foam density decreased, while the coarse powder slurries resulted in lower densities (240-530 kg m-3) than the fine powder slurries (280-530 kg m-3). Three crystal phases, muscovite, sodium aluminum silicate hydrate and thermonitrite, were determined after the geopolymerization. The muscovite formation was noted to be favored at higher S/L ratios. The partial melting of glass particles started after ~700 °C, while sintering above this temperature decreased the final density. The reduced density above 700 °C was ascribed to the release of carbon dioxide by the decomposition of thermonitrite. Both the compressive strength and thermal conductivity of geopolymer and sintered foams increased at increasing densities and were shown to be comparable with those of previously investigated geopolymer and glass foams. The geopolymer foams sintered at 750 °C exhibited the lowest density and the highest compressive strength.
Yazar Ek Girişi:
Tek Biçim Eser Adı:
Thesis (Master)--İzmir Institute of Technology:Mechanical Engineering

İzmir Institute of Technology: Mechanical Engineering --Thesis (Master).
Elektronik Erişim:
Access to Electronic Versiyon.


Materyal Türü
Demirbaş Numarası
Yer Numarası
Durumu/İade Tarihi
Tez T002293 TA418.9.C6 P76 2020

On Order