Numerical investigation of thermal management in photovoltaic cells with phase changing materials (PCM) and high conductivity inserts için kapak resmi
Numerical investigation of thermal management in photovoltaic cells with phase changing materials (PCM) and high conductivity inserts
Kyaligonza, Sylevaster, author.
Fiziksel Tanımlama:
xii, 80 leaves: charts;+ 1 computer laser optical disc.
Photovoltaic cells’ electrical conversion efficiency from incident solar radiation heavily depends on the cell temperature. A novel thermal management strategy aimed at keeping the cell temperature in the same order to maximize PV cell electrical conversion efficiency is proposed in this study. The study compares four solar module configurations: a conventional photovoltaic module (PVT module), a hybrid of conventional with PCM (PVT/PCM-I), an internally finned configuration with PCM (PVT/PCM-II), and a configuration where the bottom surface of PVT/PCM-II was cooled via convection (PVT/PCM-III). The developed 3D numerical model was solved via ANSYS software involving the solar ray tracing radiation model for incident solar radiations and a transient melting-solidification thermo-fluid model for modelling of the PCM. Numerical results were validated by comparing them against experimental results published in the literature. Results show that the conversion efficiency of PV cells reaches 16.84%, 18.65%, 18.83%, and 18.98% after 120 minutes for PVT module, PVT/PCM-I, PVT/PCM-II, and PVT/PCM-III, respectively while the specific electrical power produced reaches 75.30W/m2, 83.39W/m2, 84.19W/m2, and 89.42W/m2 for solar radiation of 540W/m2 and 26°C ambient temperature. A 5 mm increase in the fin height for PVT/PCM-II results in a 0.22% increase in efficiency while a 0.5m/s increase in the inlet velocity of the cooling air for PVT/PCM-III results in about 0.06% efficiency increase. Furthermore, performance evaluation of PVT/PCM-III was carried out with sample weather data of the Indian Institute of Technology-Delhi and the Algiers site. The hourly average of overall conversion efficiency for the respective sites reaches 16.70% and 16.84% for a conventional PV module and 19.04% and 19.19% for PVT/PCM-III where the conversion efficiency increases by 14% and 13.7% respectively.
Yazar Ek Girişi:
Tek Biçim Eser Adı:
Thesis (Master)--İzmir Institute of Technology: Mechanical Engineering.

İzmir Institute of Technology: Mechanical Engineering--Thesis (Master).
Elektronik Erişim:
Access to Electronic Versiyon.


Materyal Türü
Demirbaş Numarası
Yer Numarası
Durumu/İade Tarihi
Tez T002370 TK8322 .K99 2021

On Order