Processing and characterization of scandium added a356 cast alloy için kapak resmi
Processing and characterization of scandium added a356 cast alloy
Öner, Cezmi, author.
Yazar Ek Girişi:
Fiziksel Tanımlama:
vii, 59 leaves: charts;+ 1 computer laser optical disc.
As a result of today's rapid technological developments and the rapid consumption of reserves in the world, the search for alternative materials has started. One of the biggest examples of this is wheel alloy. Ti5B1, one of the additives of the A356 Al alloy that is generally used in automobile wheels, allows to reduce the grain size in the alloy. In the event of depletion of possible Ti5B1 resources, there will be a need to use alternative materials instead. Based on this purpose, materials that can be used instead of Ti5B1 were examined. Scandium (Sc) as a rare earth element was found to be the least studied element with A356. A number of Sc-based studies with other aluminum alloys were reported and it was decided to work with this element for A356 alloy. In the thesis, the effect of Sc adjunction on the mechanical properties of A356 aluminum alloy after the permanent die casting process was investigated. Sc added to the A356 alloy at a ratio of 0.2, 0.4 and 0.6 weight percent, respectively. Optical microscopy (OM), Scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) were used for the microstructural analyses in this study. According to the experiments and results obtained in this study, it was observed that Sc can significantly increase the mechanical properties of the A356 alloy in terms of tensile strength and hardness values. Overall, it was found that the addition of 0.2 wt.% Sc to the A356 alloy could achieve a maximum tensile strength of 258.31 MPa compared to 242.54 MPa for the reference sample without Sc. No significant improvement in tensile strength results was observed when more than 0.2 wt.% Sc was added to the alloy. As for the hardness, the sample containing 0.2 wt.% Sc reached a maximum Brinell hardness of 75.01 HB compared to 77.58 HB for the unmodified sample. As a result, the amount of porosity increased with Sc added to the alloy, and an increase in dendrite arm lengths occurred. Due to this length in the arms, a decrease in fracture toughness occurred. In addition, there was no significant improvement in hardness.
Konu Başlığı:

Yazar Ek Girişi:
Tek Biçim Eser Adı:
Thesis (Master)--İzmir Institute of Technology: Mechanical Engineering

İzmir Institute of Technology: Mechanical Engineering--Thesis (Master).
Elektronik Erişim:
Access to Electronic Versiyon.


Materyal Türü
Demirbaş Numarası
Yer Numarası
Durumu/İade Tarihi
Tez T002394 TN490.A2 O58 2021

On Order