Skip to:ContentBottom
Experimental Investigation of a hybrid thermal management system for an electric vehicle battery module için kapak resmi
Experimental Investigation of a hybrid thermal management system for an electric vehicle battery module
Başlık:
Experimental Investigation of a hybrid thermal management system for an electric vehicle battery module
Yazar:
Coşkun, Turgay, author.
Yazar Ek Girişi:
Fiziksel Tanımlama:
xv, 101 leaves: charts;+ 1 computer laser optical disc.
Özet:
Environmental concerns and limited energy sources of the world are driving force in electric vehicle technology improvements. One of the main components of the electric vehicles is battery cell. Using batteries in electric vehicles brings up new concerns such as safety problems, limit of range and so on. The temperature of the battery cell increases during charging/discharging and operation. There is an optimal temperature range (15ºC ─ 35ºC) for battery cells to maximize efficiency and prevent safety issues. The high temperature values in the battery cells can be result with fire and explosion. In addition, the performance of the battery cells is highly affected by operating temperatures. Therefore, thermal management of the battery cells is a necessity to overcome safety issues and maximize the battery performance. The feasibility of microchannel heat sink for battery cooling is investigated numerically and it is decided to continue with conventional length scales because of the higher pressure drop values in micro scales. Thus, a hybrid cooling system, using air and liquid solely or simultaneously, is developed and is introduced to a battery module. The battery module created by connecting three lithium-ion pouch cells in serial. According to the results, air cooling gives the more homogeneous temperature distribution. The lowest temperature values are observed in hybrid cooling system and temperature difference between the cells are reduced by 30% when compared to the water-cooling system. The temperature profile in air cooling shows that any increase in the ambient temperature (23ºC) or discharge rate will undergo a temperature rise in battery cells and optimal temperature ranges will be exceeded in that case. A step function, in a sequence of various discharge rate, is introduced to the battery module to determine cooling capacity of the air system during operation. The result show that the temperature of the cells is kept below 30ºC. The hybrid cooling is enabled to select cooling systems for the battery module with respect to operating condition; hence, the efficiency of the system is increased.
Yazar Ek Girişi:
Tek Biçim Eser Adı:
Thesis (Doctoral)--İzmir Institute of Technology: Mechanical Engineering.

İzmir Institute of Technology: Mechanical Engineering--Thesis (Doctoral).
Elektronik Erişim:
Access to Electronic Versiyon.
Ayırtma: Copies: