Effect of gold nanorod properties on LSPR response için kapak resmi
Effect of gold nanorod properties on LSPR response
Başlık:
Effect of gold nanorod properties on LSPR response
Yazar:
Kılıç, Şebnem, author.
Yazar Ek Girişi:
Fiziksel Tanımlama:
xii, 51 leaves: charts;+ 1 computer laser optical disc.
Özet:
Optical qualities make gold nanorods (GNRs) excellent for plasmonic biosensors. Localized surface plasmon resonance (LSPR) phenomenon which occurs on GNR surfaces enables the creation of highly sensitive biosensors. The physical properties such as aspect ratio and size are directly related to the LSPR response of GNRs. The aim of this study is to investigate the impact of the aspect ratio (AR) and the interparticle distance on the localized surface plasmon resonance (LSPR) response of GNRs decorated glass sensor chips. For this aim, GNRs were first synthesized using a seed-mediated growth method. The effect of AgNO3 concentration on the AR of GNRs was investigated. It was observed that increasing AgNO3 concentration resulted in GNRs with higher AR and a red shift in the longitudinal plasmon peak wavelength. GNRs with an AR of 4, 6 and 8 were successfully synthesized. Next, the effect of the stabilizer molecule type and molecular weight on the distribution of GNRs on the silanized glass surface was investigated. It was found that the APTES modified glass surfaces cannot be coated with CTAB stabilized GNRs. Using GNRs stabilized with PEG5K resulted in a more homogeneous distribution of GNRs on the glass surface with respect to GNRs stabilized with PEG2K. The interparticle distance between GNRs on the glass surface was successfully controlled by simply concentrating or diluting the GNR solution used for coating the glass surfaces. It was observed that the LSPR peak shifts decreased upon binding of analytes as the interparticle distance between GNRs decreased in the studied range. On the other hand, as the AR decreased, the LSPR response of the GNRs shifted blue. The results presented in this thesis may contribute to future research to improve the potential of LSPR-based biosensors for diverse biomedical and diagnostic applications.
Tek Biçim Eser Adı:
Thesis (Master)--İzmir Institute of Technology: Biotechnology.

İzmir Institute of Technology: Biotechnology--Thesis (Master).
Elektronik Erişim:
Access to Electronic Versiyon.
Ayırtma: Copies: