Preparation and characterization of titania based powders and suspensions for photocatalytic applications için kapak resmi
Preparation and characterization of titania based powders and suspensions for photocatalytic applications
Yurtsver, Hüsnü Arda, author.
Fiziksel Tanımlama:
xvii, 222 leaves: color illustraltions.+ 1 computer laser optical disc.
Growing environmental concerns related to the extensive use of nonsustainable fossil fuels and increasing energy demand will force mankind, sooner or later, to tap into clean and sustainable sources of energy and artificial photosynthesis is being considered as a promising prospect for this concern. Photocatalysis is expected to make a great contribution to solutions for environmental problems and renewable energy generation. Titania based photocatalytic materials are one of the widely used materials in artificial photosynthesis research due to their unique chemical and optical properties. Recent research have shown that rare earth element (REE) doping improves the photocatalytic activity of TiO2 phases in the visible region. The effects of REE doping level and heat treatment temperature on the microstructure evolution, optical properties and the photocatalytic water splitting/CO2 photoreduction activities of mostly sol-gel derived titania powders were investigated in this thesis. The results of this thesis indicated that REE ions may enter the interstitial voids of TiO2 lattice or segregate on the grain boundaries of TiO2 as a separate phase and RE2Ti2O7 phases were formed for the REEs with relatively smaller ionic sizes. The experimental work conducted revealed the importance of surface area, crystallinity, light absorption, the presence of oxygen vacancies and structural defects in the efficiency of photocatalytic processes. Results have shown that REE doping improves the artificial photosynthesis activity of TiO2 at relatively low doping levels and 700oC heat treatment temperature as the production rate of H2 and CO/CH4 were significantly higher with REE doped TiO2 compared to pure TiO2.
Yazar Ek Girişi:
Tek Biçim Eser Adı:
Thesis(Doctoral)--İzmir Institute of Technology: Chemical Engineering.

İzmir Institute of Technology: Chemical Engineering--Thesis (Doctoral).
Elektronik Erişim:
Access to Electronic Versiyon.


Materyal Türü
Demirbaş Numarası
Yer Numarası
Durumu/İade Tarihi
Tez T001376 QD716.P45 Y95 2015

On Order