Contemporary Geometry And Related Topics, Proceedings Of The Workshop. için kapak resmi
Contemporary Geometry And Related Topics, Proceedings Of The Workshop.
Başlık:
Contemporary Geometry And Related Topics, Proceedings Of The Workshop.
Yazar:
Bokan, Neda.
ISBN:
9789812703088
Yazar Ek Girişi:
Fiziksel Tanımlama:
1 online resource (469 pages)
İçerik:
Contents -- Preface -- V. V. Balashchenko Invariant Structures Generated by Lie Group Automorphisms on Homogeneous Spaces -- 1. Introduction -- 2. Homogeneous regular -spaces -- 3. Canonical affinor structures on regular -spaces -- 4. The algebra A for regular -spaces -- 5. The classes of regular -spaces -- 6. Linear subspaces generated by -- 7. Canonical structures P,J,f,h and Riemannian metrics -- 8. Metric f-structures in generalized Hermitian geometry -- 9. Invariant NKf-structures on naturally reductive homogeneous spaces -- 10. Canonical NKf-structures on regular spaces -- 11. Examples -- 11.1. Riemannian 4- and 5-symmetric spaces -- 11.2. The spheres S2, S5, S6 -- 11.3. Homogeneous -spaces of order 8 -- 11.4. The 6-dimensional generalized Heisenberg group -- 11.5 The group of hyperbolic motions of the plane R2 -- 11.6. The flag manifold SU(3)/Tmax -- 11.7. The regular -space with non-semisimple -- References -- M. B. Banaru On Kenmotsu Hypersurfaces in a Six-Dimensional Hermitian Submanifold of Cayley Algebra -- 1. Introduction -- 2. Preliminaries -- 3. The Main Results -- References -- N. Blazic and S. Vukmirovic Para-hypercomplex Structures on a Four-Dimensional Lie Group -- 1. Introduction -- 2. Preliminaries -- 3. Lie algebras admitting a para-hypercomplex structure -- 3.1. Case when g has a non-trivial center -- 3.2. Case of solvable Lie algebra g and dimg' 2. -- Acknowledgments -- References -- A. V. Bolsinov and B. Jovanovic Integrable Geodesic Flows on Riemannian Manifolds: Construction and Obstructions -- 1. Introduction -- 1.1. Geodesics on Riemannian manifolds -- 1.2. Integrable geodesic flows -- 1.3. Statement of the problem -- 2. Classical examples of integrable geodesic flows -- 3. Topological obstructions to integrability -- 3.1. Case of two-dimensional surfaces.

3.2. Topological obstructions in the case of non simply connected manifolds -- 3.3. Topological entropy and integrability of geodesic flows -- 4. Counterexamples -- 5. Geodesic flows on homogeneous spaces and bi-quotients of Lie groups -- 5.1. Non-commutative integrability -- 5.2. Integrable geodesic flows on G / H and K\G/H -- 6. Complete commutative algebras on T*(G/H) -- 6.1. Mishchenko-Fomenko conjecture -- 6.2. Integrable pairs -- 7. Integrable deformations of normal metrics -- 8. Methods and examples -- 8.1. Argument shift method -- 8.2. Chains of subalgebras -- 8.3. Generalized chain method -- 9. Integrability and reduction -- 10. Geodesic flows on the spheres -- Acknowledgments -- References -- M. DjoriC and M. Okumura CR Submanifolds of Maximal CR Dimension in Complex Space Forms and Second Fundamental Form -- 1. Introduction -- 2. CR submanifolds of maximal CR dimension of complex space forms -- 3. CR submanifolds satisfying h(FX, Y ) + h(X, F Y ) = 0. -- 4. CR submanifolds satisfying h(FX, Y ) - h(X, F Y ) = 0 -- References -- M. Carmen Domingo-Juan and V. Miquel Pappus-Guldin's Formulae versus Weyl's Tube Formula: Old and Recent Results -- 1. Introduction -- 2. Motion along a curve -- 2.1. Definitions -- 2.2. Motions as curves in SO(n) and o(n ) -- 2.3. Moment respect to a geodesic hyperplane and center of mass -- 2.4. The volume of a domain obtained by the motion along a curve -- 2.5. The volume of a hypersurface obtained by the motion along a curve -- 3. Motion along a submanifold -- 3.1. Definitions -- 3.2. q-center of mass -- 3.3. The volume of D -- 3.4. Examples of q-symmetric domains -- 3.5. The volume of C -- 4. Holomorphic motions along complex curves -- 4.1. Definition of holomorphic and Frenet holomorphic motion -- 4.2. The volume of D for holomorphic motions -- 4.3. Bounds for vol(D) when n > 2 and P admits a Frenet motion.

4.4. Symmetries on Dp, which make (4.3) true for any motion -- References -- B. Dragovich Non-Archimedean Geometry and Physics on Adelic Spaces -- 1. Introduction -- 2. Non-Archimedean Geometry and p-Adic Numbers -- 3. Adeles and Their Functions -- 4. Quantum Mechanics on Adelic Spaces -- 5. Adelic Quantum Cosmology -- 6. Adelic String/M-theory -- 7. Concluding Remarks -- Acknowledgements -- References -- B. Dragovich and Z. Rakic Lagrangian Aspects of Quantum Dynamics on a Noncommutative Space -- 1. Introduction -- 2. Quadratic Lagrangians -- 2.1. Classical case -- 2.2. Noncommutative case -- 2.3. Linearization and some examples -- 3. Concluding Remarks -- Acknowledgements -- References -- M. Fernandez-Lopez, E. Garcia-Rio and D. N. Kupeli The Mobius Equation: A Local Analytical Characterization of Twisted Product Structures -- 1. Introduction -- 2. Preliminaries -- 2.1. Twisted and warped product structures -- 2.2. Second fundamental form of a map -- 3. Mobius equation associated to a map -- 4. Decomposition results -- 5. Mobius equation and affine maps -- References -- M. Fernandez, V. Munoz and J. A . Santisteban Symplectically Aspherical Manifolds with Nontrivial 2 and with No Kahler Metrics -- 1. Introduction -- 2. Preliminaries -- 3. The manifolds M2(n+1)(k) -- 4. Symplectically aspherical manifolds with nontrivial 2 and with no Kahler metrics -- References -- A. T. Fomenko and P. V. Morozov Some New Results in Topological Classification of Integrable Systems in Rigid Body Dynamics -- 1. Integrable Hamiltonian systems on symplectic manifolds -- 1.1. Completely integrable Hamiltonian systems -- 1.2. Liouville's theorem. -- 1.3. Equivalence relations of integrable Hamiltonian systems -- 2. Fomenko-Zieschang invariants of integrable Hamiltonian systems with two degrees of freedom -- 2.1. Isoenergy surfaces.

2.2. Critical sets on isoenergy surfaces -- 2.3. Neighborhoods of singular leaves on the isoenergy surfaces -- 2.4. Gluing matrices -- 3. Some new results of Liouville classification in rigid body dynamics -- 3.1. The phase space -- 3.2. Classical cases of integrability: Euler, Lagrange, Kovalevskaya -- 3.3. Liouville classification of the Clebsch case -- 3.4. Marked molecules of the Sokolov case -- References -- F. Gavarini The Crystal Duality Principle: From General Symmetries to Geometrical Symmetries -- 1. Introduction -- 2. Notation and terminology -- 2.1. Algebras, coalgebras, and the whole zoo. -- 2.2. Function algebras. -- 2.3. Enveloping algebras and symmetric algebras. -- 2.4. Filtrations. -- 3. Connecting functors on (co)augmented (co)algebras -- 4. Connecting and crystal functors on bialgebras and Hopf algebras -- 5. Deformations I - Rees algebras, Rees coalgebras, etc. -- 5.1. Filtrations and "Rees objects". -- 5.2. Connecting functors and Rees modules. -- 5.3. The bialgebra and Hopf algebra case. -- 6. Deformations II - from Rees bialgebras to quantum groups -- 7. Poisson duality and the Crystal Duality Principle -- Acknowledgements -- References -- Z. Hu and H. Li Willmore Submanifolds in a Riemannian Manifold -- 1. Introduction -- 2. Submanifolds in Riemannian manifold -- 3. Euler-Lagrange equation of the Willmore functional -- 4. Examples of Willmore submanifolds in Sn+P(1) -- 5. Willmore complex submanifolds in a complex space form -- 6. Willmore Lagrangian submanifolds in a complex space form -- Acknowledgments -- References -- Dj. Kadijevich Some Aspects of Visualizing Geometric Knowledge: Possibilities, Findings, Further Research -- 1. To visualize geometric knowledge or not? -- 2. Two tools for computer-based visualizations -- 2.1. Dynamic geometry environments -- 2.2. Java applets -- 3. Research outcomes and further directions.

4. Coda -- References -- V. P. Karassiov Dual Algebraic Pairs and Polynomial Lie Algebras in Quantum Physics: Foundations and Geometric Aspects. -- 1. Introduction -- 2. Dual algebraic pairs and polynomial Lie algebras in multiboson physics: a general analysis -- 3. Dual algebraic pairs in action: applications in polarization and nonlinear quantum optics -- 4. Conclusion -- Acknowledgments -- References -- E. Malkowsky and V. Velickovic Visualisation and Animation in Differential Geometry -- 1. Introduction and Notations -- 2. The General Concept and Main Principles of Our Software -- 2.1. Separation of geometry and drawing -- 2.2. Line graphics -- 2.3. Independent visibility check -- 3. The Procedure Check -- 4. Contour -- 5 . Curves -- 6. Surfaces -- 6.1. The normal and principal curvature -- 6.2. The geodesic curvature -- 7. Some Animations -- References -- G. V. Nosovskiy Computer Gluing of 2D Projective Images -- 1. Introduction -- 2. A method of recognition of conjugate points, based on the distribution of shifts between bounded patterns -- 3. The stability of determination of the projective mapping using a configuration of conjugate points -- References -- A . A . Oshemkov On the Topological Structure of the Set of Singularities of Integrable Hamiltonian Systems -- 1. Introduction -- 2. Nondegenerate singularities -- 3. Gauss-Bonnet formula for complex vector bundles -- 4. Some properties of the complex of singularities of integrable Hamiltonian systems -- References -- Translators' Notes: -- Th. Yu. Popelensky and Yu. P. Solovjev Lie-Cartan Pairs and Characteristic Classes in Noncommutative Geometry -- 1. Introduction -- 2. Characteristic classes of complex vector bundles -- 3. Characteristic classes of projective modules over an associative algebra -- 4. Mishchenko-Solovjev-Zhuraev construction -- 5. Z/2-graded Lie-Cartan pairs.

Appendix: The trace of an endomorphism of a projective module.
Özet:
This volume covers a broad range of subjects in modern geometry and related branches of mathematics, physics and computer science. Most of the papers show new, interesting results in Riemannian geometry, homotopy theory, theory of Lie groups and Lie algebras, topological analysis, integrable systems, quantum groups, and noncommutative geometry. There are also papers giving overviews of the recent achievements in some special topics, such as the Willmore conjecture, geodesic mappings, Weyl's tube formula, and integrable geodesic flows. This book provides a great chance for interchanging new results and ideas in multidisciplinary studies. The proceedings have been selected for coverage in:. • Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings). • CC Proceedings — Engineering & Physical Sciences.
Notlar:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Elektronik Erişim:
Click to View
Ayırtma: Copies: