Lie Theory And Its Applications In Physics V, Proceedings Of The Fifth International Workshop : Proceedings of the Fifth International Workshop. için kapak resmi
Lie Theory And Its Applications In Physics V, Proceedings Of The Fifth International Workshop : Proceedings of the Fifth International Workshop.
Başlık:
Lie Theory And Its Applications In Physics V, Proceedings Of The Fifth International Workshop : Proceedings of the Fifth International Workshop.
Yazar:
Doebner , H. D.
ISBN:
9789812702562
Yazar Ek Girişi:
Fiziksel Tanımlama:
1 online resource (439 pages)
İçerik:
Contents -- Preface -- I. Lie Theory -- Twisted Modules over Lattice Vertex Algebras B . Bakalov and V.G. Kac -- 1. Introduction -- 2. Preliminaries on Vertex Algebras -- 2.1. Local Fields -- 2.2. Vertex Algebras -- 2.3. Conformal Vertex Algebras -- 3. Twisted Modules over Vertex Algebras -- 3.1. Definition in Terns of Borcheds Identity -- 3.2. Consequences of the Definition -- 3.3. Associativity of Twisted Fields -- 3.4. Definition in Terms of Associativity -- 4. Twisted Modules over a Lattice Vertex Algebra -- 4.1. Lattice Vertex Algebras -- 4.2. Twisted Vertex Operators -- 4.3. The Heisenberg Pair (h G ) -- 4.4. The Groups G and G -- 4.5. Representations of (h G) -- 4.6. Classification of - Twisted V-Modules -- Acknowledgments -- References -- Structure Theory of Finite Lie Conformal Superalgebras D. Fattori, V.G. Kac and A . Retakh -- 1. Introduction -- 2. Basic definitions and structures -- 2.1. Formal distributions and conformal algebras -- 2.2. Structural terminology -- 2.3. Conformal modules -- 2.4. Derivations -- 2.5. Minimal ideals -- 3. Differentiably simple conformal superalgebras -- 3.1. Centroid -- 3.2. Conformal derivations and the centroid -- 3.3. Constructing a chain of ideals -- 3.4. Constructing the maximal ideal -- 3.5. Centroid structure -- 3.6. More on differential simplicity -- 3.7. Splitting R -- 4. Simple Lie conformal superalgebras and their derivations -- 4.1. Simple confomal supemlgebms -- 4.2. Conformal derivations of simple Lie conformal superalgebras -- 5. Conformal derivations of differentiably simple Lie conformal superalgebras -- 5.1. Conformal centroid -- 5.2. Conformal derivations of a tensor product -- 6. Semisimple Lie conformal superalgebras -- 6.1. Proof of Theorem 6.1 -- 6.2. Conformal derivations -- 7. Physical Virasoro pairs -- 7.1. Definitions -- 7.2. Classification results.

7.3. Physical conformal superalgebras -- 8. Representations of Solvable Lie Conformal Superalgebras -- 8.1. Preliminaries -- 8.2. Rank 1 modules -- 8.3. Induced modules -- Acknowledgments -- References -- On Characters and Dimension Formulas for Representations of the Lie Superalgebra gl(m/n) E.M. Moens and J. Van der Jeugt -- 1. Introduction -- 2. Covariant modules of the Lie superalgebra gI(mln) -- 3. Supersymmetric Schur polynomials -- 4. The t-dimension of a covariant module -- References -- Matching Conditions for Invariant Eigendistributions on Some Semisimple Symmetric Spaces S. Aoki and S. Kato -- 1. Matching Conditions for IED's -- 2. Case of X = GL(4, R ) / (GL(2, R) X GL(2, R)) -- 2.1. Cartan Subspaces and Weyl Groups -- 2.2. Radial Parts of Invariant Differential Operators -- 2.3. Attached Symmetqic Subspaces -- 2.4. Local Matching Conditions -- 2.5. Explicit Form of IED's -- References -- II. Field Theory -- Rational Conformal Correlation Functions of Gauge Invariant Local Fields in Four Dimensions N.M. Nikolov, Y.S. Stanev and I.T. Todorov -- 1. Introduction -- 2. Implications of GCI. General 4-point function -- 2.1. Strong locality and energy positivity imply rationality -- 2.2. General truncated 4-point function of a GCI scalar field -- 3. OPE in terms of bilocal fields -- 3.1. Fixed twist fields. Conformal partial wave expansion -- 3.2. Symmetrized contribution of twist 2 (conserved) tensors -- 3.3. The concept of a minimal model -- 4. Is there a non-trivial gauge field theory model? -- 4.1. Restrictions on the parameters in the 4-point function -- 4.2. A composite bilocal field reproducing J1 -- 4.3. Elementary contributions to Wt2n, symmetric under Z 2 X Zn -- 4.4. Concluding remarks -- Acknowledgments -- References -- Renormalisation of Noncommutative Scalar Field Theories H. Grosse and R . Wulkenhaar -- 1. Introduction.

2. Field theory on noncommutative RD in momentum space -- 3. Renormalisation group approach to noncommutative scalar models -- 3.1. Matrix representation -- 3.2. The Polchinski equation for matrix models -- 3.3. 4-theory o n noncommutative R2 -- 3.4. 4-theory on noncommutative R4 -- Acknowledgement -- References -- On the Insertion-Elimination Lie Algebra of Feynman Graphs K. Ebrahimi-Fard, D. Kreimer and I. Mencattini -- 1. Introduction -- 2. Pre-Lie Algebra of Feynman Graphs -- 3. Two Representations as Derivations on the Hopf Algebra of Feynman Graphs -- 4. The Ladder case -- 5. Conclusions and Outlook -- Acknowledgments -- References -- Superconformal Kinematics and Dynamics in the AdS/CFT Correspondence E. Sokatchev -- 1. The role of BPS operators in the AdS/CFT correspondence -- 2. BPS short multiplets -- 2.1. The superconformal algebm PSU(2,2/4) -- 2.2. Realization on superfields in real superspace -- 2.3. Chiml superspace -- 2.4. Gmssmann-analytic or BPS superfields -- 3. N = 4 SYM and 1/2 BPS operators -- 3.1. N = 4 SYM on shell -- 3.2. Composite BPS operators -- 4. Correlators of 1/2 BPS operators -- 4.1. General properties of two-, three- and four-point functions -- 4.2. Two- and three-point functions -- 4.3. Four-point functions -- 4.4. Superconformal Ward identities -- 5. Dynamical input from the insertion formula -- 5.1. The insertion formula -- 5.2. (4 + 1)-point nilpotent invariants -- 5.3. Restrictions on the quantum part of the amplitude -- 5.3.1. Three points -- 5.3.2. FOUT points, extremal and subextremal -- 5.3.3. Four points, ki = 2 -- 5.3.4. Four points, ki = 3 and ki = 4 -- 5.4. Large N degeneracy in perturbation theory -- 6. Confronting CFT with AdS -- 6.1. Effective action on AdS x S5 -- 6.2. Main results -- 7. Conclusions -- Acknowledgments -- References -- Renormalons and Fractional Instantons C. Gomez -- 1. Introduction.

2. Divergences in Quantum Field Theory: Renormalons and Fractional Instantons -- 3. The Effective Action for N = 1 super Yang Mills -- 4. Some Comments on the Mass Gap -- Acknowledgments -- References -- III. String Theory -- The Hagedorn/Deconfinement Phase Transition in Weakly Coupled Large N Gauge Theories O. Aharony, J. Marsano, S. Minwalla, K. Papadodimas and M. Van Raamsdonk -- 1. Introduction -- 2. Partition function for free Yang-Mills theory on a compact space -- 2.1. Two matrix harmonic oscillators give Hagedom behavior for large N -- 2.2. Exact partition function for N = -- 2.3. Exact partition function for free Yang-Mills theory -- 2.4. U ( N ) gauge theories with adjoint matter on S3 x R -- 3. Path integral derivation of the matrix integral and an order parameter -- 3.1. Basic set-up -- 3.2. The integration measure -- 3.3. Evaluation of Seff at one-loop -- 4. Solution of the free Yang-Mills matrix model -- 4.1. Low temperature behavior -- 4.2. Behavior near the transition -- 4.3. High temperature behavior -- 4.4. Summary of thermodynamic behavior -- 4.5. The Polyakov loop as an order parameter at finite volume -- 5. Phase structure at weak coupling -- 5.1. General properties of the effective action -- 5.2. The general form of the effective action in perturbation theory -- 5.3. Possible phase structures at weak coupling -- 5.4. Density of states as a function of energy -- 6. Extrapolation to strong coupling and the dual description -- 6.1. Dual interpretation of the N = 4 SYM thermodynamics at strong coupling -- 6.2. Deconfinement and black holes -- References -- Two-Loop Commuting Charges and the String/Gauge Duality G. Arutyunov and M. Staudacher -- 1. The status quo -- 2. Two-loop stringlgauge matching of infinitely many higher commuting charges -- 2.1. Folded string -- 2.2. Circular string -- Acknowledgments -- References.

Boundary Ground Ring and Disc Correlation Functions in Liouville Quantum Gravity I. Kostov -- 1. Introduction -- 2. Preliminaries: world-sheet CFT for the disc amplitudes -- 2.1. The effective action -- 2.2 . Bulk and boundary vertex operators -- 2.3. Normalization of the bulk and boundary cosmological constants and the screening operators -- 2.4. Degenerate fields -- 3. Bulk ground ring -- 3.1. The ring relations -- 3.2. Functional equations for the bulk correlators -- 4. The boundary ground ring -- 4.1. The ring relations -- 4.2. Deformation of the ring relations by the boundary Liouville term and the screening charges -- 4.3. Functional and difference equations for the correlation functions of boundary primary fields -- 5. Discussion -- Acknowledgments -- References -- Strings, Integrable Systems, Geometry and Statistical Models A. Marshakov -- 1. Introduction -- 2. Matrix models and integrable systems -- 3. Seiberg-Witten geometry, Young diagrams and topological strings -- 4. Discussion -- Acknowledgments -- References -- Impact of Dynamical Tensions in Modified String and Brane Theories E.I. Guendelman, A. Kaganovich, E. Nissimov and S. Pacheva -- 1. Main Motivation -- 2. Dp-Branes with Dynamical Tension -- 3. Conformal Anomaly and Its Impact on the Dynamical String Tension -- 4. Conclusions -- Acknowledgments -- References -- IV. Integrable Systems -- Quantum Group in Roots of Unity and the Restriction of X X Z Model A. Belavin -- 1. Center of the quantum group and the restriction in roots of unity -- 2. Restriction of the XXZ model in roots of unity -- Acknowledgments -- References -- Spaces of Boundary Values Related to a Multipoint Version of the KP-Hierarchy G. F. Helminck -- 1. Introduction -- 2. An algebraic set-up for the linearization -- 3. Spaces of boundary values -- 4. The Grassmannian related to H = H* H+.

5. The Line bundles Det and Det* over Gro(H).
Özet:
This volume is targeted at theoretical physicists, mathematical physicists and mathematicians working on mathematical models for physical systems based on symmetry methods and in the field of Lie theory understood in the widest sense. It includes contributions on Lie theory, with two papers by the famous mathematician Kac (one paper with Bakalov), further papers by Aoki, Moens. Some other important contributions are in: field theory – Todorov, Grosse, Kreimer, Sokatchev, Gomez; string theory – Minwalla, Staudacher, Kostov; integrable systems – Belavin, Helminck, Ragoucy; quantum-mechanical and probabilistic systems – Goldin, Van der Jeugt, Leandre; quantum groups and related objects – Jakobsen, Arnaudon, Andruskiewitsch; and others. The proceedings have been selected for coverage in:. • Index to Scientific & Technical Proceedings® (ISTP® / ISI Proceedings). • Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings). • CC Proceedings — Engineering & Physical Sciences.
Notlar:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Yazar Ek Girişi:
Elektronik Erişim:
Click to View
Ayırtma: Copies: