Molecular Realizations of Quantum Computing 2007. için kapak resmi
Molecular Realizations of Quantum Computing 2007.
Başlık:
Molecular Realizations of Quantum Computing 2007.
Yazar:
Nakahara, Mikio.
ISBN:
9789812838681
Yazar Ek Girişi:
Fiziksel Tanımlama:
1 online resource (282 pages)
Seri:
Kinki University Series on Quantum Computing, 5
İçerik:
CONTENTS -- Preface -- Liquid-state NMR Quantum Computer: Working Principle and Some Examples -- 1. Introduction -- 2. Principle of NMR -- 2.1. Vector model -- 2.1.1. Magnetic moment -- 2.1.2. Precession -- 2.1.3. Rotating magnetic .eld -- 2.1.4. Bloch equation -- 2.1.5. Spin echo -- 2.1.6. NMR equipment and signal detection -- 2.2. Quantum mechanical view -- 2.2.1. Magnetic moment -- 2.2.2. Precession -- 2.2.3. Rotating magnetic .eld -- 2.2.4. Bloch equation -- 2.2.5. Spin echo -- 2.2.6. NMR equipment and signal detection -- 3. Principle of Liquid-State NMR Quantum Computer -- 3.1. Two-qubit Hamiltonian -- 3.2. One-qubit gates -- 3.3. Two-qubit gates -- 3.4. Non-unitary operations -- 3.4.1. Temporal averaging -- 3.4.2. Spatial averaging -- 3.5. Separability -- 4. Quantum Computation -- 4.1. Quantum channel -- 4.1.1. Quantum channel and entanglement .delity -- 4.1.2. Phase .ip channel -- 4.1.3. Quantum process tomography -- 4.2. Generation and suppression of artificial decoherence -- 4.2.1. Decoherence -- 4.2.2. Phase flip channel -- 4.2.3. Suppressing decoherence by the bang-bang control -- 4.2.4. Arti.cial environment -- 4.2.5. Phase decoherence in a quantum memory -- 4.2.6. Simulation of phase decoherence in a quantum memory -- 4.3. Quantum teleportation -- 4.3.1. Theory -- 4.3.2. Quantum circuit -- 4.3.3. Sample and spectrometer -- 4.3.4. Hamiltonian and detector -- 4.3.5. Pulse sequence -- 4.3.6. Experiments -- 4.3.7. Results -- 5. Conclusions -- Acknowledgments -- References -- Flux qubits, Tunable Coupling and Beyond -- References -- Josephson Phase Qubits, and Quantum Communication via a Resonant Cavity -- References -- Quantum Computing Using Pulse-based Electron-nuclear Double Resonance (ENDOR): Molecular Spin-qubits -- 1. Introduction -- 1.1. General Introduction -- 1.2. An Electron Spin as an Inherent Matter Spin-Qubit.

1.3. Advantages of Photon Qubits Compared with Matter Spin-Qubits in Terms of Enabling Technology -- 2. A Short Course of Pulsed ENDOR for Non-Specialists -- 2.1. Gyromagnetic Ratios of an Electron Spin and Nuclear Spin: Bohr Magneton for Electrons vs. Nuclear Magneton -- 2.2. What is Electron Spin Resonance/Electron Paramagnetic Resonance (ESR/EPR)? : A Basis for ESR/EPR Spectroscopy -- 2.3. Spectral Density of Electron Magnetic Resonance Transitions: High Resolution and High Sensitivity by Quantum Transformation in ENDOR Spectroscopy -- 2.4. Fourier-Transform ESR/ENDOR Spectroscopy: Pulse-Based ESR/ENDOR as Enabling Spin Technology -- 2.5. A Basis of Spin Manipulation Technology for QC/QIP in Pulse Electron Magnetic Resonance -- 2.6. An Electron-Spin Echo of Spin Packets Generated by Three-Pulse Sequence in Electron Magnetic Resonance -- 2.7. A Basis for Pulse-Based ENDOR Spin Technology: Two Types of Electron-Spin-Echo Detected ENDOR Spectroscopy -- 2.8. Generation of A Pseudo Pure State for Electron-Nuclear Spin-Qubit Systems by Pulse-Based ENDOR Spin Technology -- 2.9. Generation and Identification of Quantum Entanglement between An Electron and One Nuclear Spin-Qubit by Pulse-Based ENDOR Spin Technology -- 2.10. Inter-Conversion of Entangled States by Pulse ENDOR Technique -- 2.11. TPPI Detection of the Entanglement between Electron-Nuclear Hybrid Spin-Qubits by Pulse ENDOR Technique -- 3. Implementation of Molecular-Spin Based QC/QIP by the Use of Pulse ENDOR Spin Technology -- 3.1. Why Is Molecular Spin-Qubit Based QC/QIP by Using Pulse ENDOR Spin Technology Emerging? -- 3.1.1. Pseudo-pure states and quantum entanglements -- 3.1.2. Molecular spin-qubit ENDOR based quantum computers -- 3.1.3. Preparation of a molecular entity for QC-ENDOR: The simplest case.

3.1.4. Implementation of super dense coding by pulsed QC-ENDOR and a direct detection of the spinor of the spin-1/2 proton -- 3.2. TPPI Detection and Inter-Conversion of the Bell States by Pulse ENDOR -- 3.3. The First Direct Detection of Spinor of an Electron Spin-Qubit by Phase Manipulation -- 3.4. Tri-partite Electron-Spin Nuclear-Qubits Experiments -- Identification of Separable States Decomposed into the Bi-partite Entanglements -- 4. Development of Coherent-Dual ELDOR Technique for Molecular Electron Spin-Qubits Based Quantum Computers -- 4.1. Electron Spin Manipulation Technology beyond Pulse ENDOR: CD-ELDOR Technique -- 4.2. Materials Challenge for Biradical Qubits with Small Spin-Orbit Interactions: g-Engineering Approach to Molecular Design -- 5. Scalable Molecular-Spin Based Electron Spin-Qubits: Spin-Qubits Systems with 1D Periodic Spin Structure Proposed by Lloyd -- 6. Conclusions -- Acknowledgments -- References -- Fullerene C60: A Possible Molecular Quantum Computer -- 1. Introduction -- 2. Fullerenes and Endohedral Fullerenes -- 2.1. Historical Overview -- 2.2. Physical Properties of Fullerenes -- 2.3. Putting Atoms inside Forming Endohedral Fullerenes -- 2.4. Detection of the Endohedrals -- 2.5. The Yields of the Endohedrals -- 2.6. Concentration and Purification -- 3. Experimental Approaches to QC/QIP -- 3.1. Necessary Properties for QC/QIP -- 3.2. From NMR to ESR -- 3.3. Nitrogen Atom in a C60 Cage -- 3.4. Proposal and Implementation of Fullerene Quantum Computer -- 3.5. The ESR and ENDOR Experiments -- 4. Production of N@C60 at Kindai -- Acknowledgments -- References -- Molecular Magnets for Quantum Computation -- 1. Introduction -- 2. Recent progress in application of molecular magnets to quantum computation -- 2.1. Mn12 SMM -- 2.2. [Mn4]2 as a dimer of SMM -- 2.3. Antiferromagnetic rings of [Cr7Ni] -- 3. Summary -- References.

Errors in a Plausible Scheme of Quantum Gates in Kane's Model -- 1. Introduction -- 2. Kane's model -- 2.1. Overview -- 2.2. Readout of a qubit -- 2.3. Requisite techniques for the fabrication -- 3. Hamiltonian and computation bases -- 3.1. Hamiltonian -- 3.2. Computation bases -- 3.3. Is a nuclear spin a qubit? -- 4. Spin-flip operations -- 4.1. Controlling processes -- 4.2. Schrödinger equation in the second step -- 4.3. Errors in spin-flip operations -- 5. Suppression of leakage errors -- 5.1. Model -- 5.2. Determination of parameters for leakage elimination -- 5.3. Leakage free quantum gates -- 5.4. Leakage elimination of spin-flip operations in Kane's model -- 6. Summary -- Acknowledgments -- References -- Yet Another Formulation for Quantum Simultaneous Noncooperative Bimatrix Games -- 1. Introduction -- 2. Conventional Classical and Quantum Simultaneous Noncooperative Bimatrix Games -- 2.1. Classical simultaneous noncooperative game -- 2.2. Quantum simultaneous noncooperative game -- 3. Is entanglement or nonclassical correlation an important resource? -- 3.1. Strategically equivalent games without using entanglement -- 3.2. Solving the PD dilemma with fancy observables -- 4. Overview of the Metagame Theory -- 5. Quantum Metagame -- 5.1. From quantum PD to quantum meta-PD -- 5.2. From quantum Samaritan's Dilemma to quantum meta-Samaritan's Dilemma -- 6. Discussions -- 7. Conclusion -- References -- Continuous-variable Teleportation of Single-photon States and an Accidental Cloning of a Photonic Qubit in Two-channel Teleportation -- 1. Introduction -- 2. Transfer operator -- 3. Single-photon state teleportation -- 4. Application to a single-photon polarization -- 5. Transfer of polarization by two-mode CV teleportation -- 6. CV teleportation of a single-photon polarization qubit -- 7. Cloning fidelity of the N-photon output -- 8. Conclusions.

References.
Özet:
This book provides an overview on physical realizations of quantum computing by means of molecular systems. It will be useful for graduate students and researchers interested in quantum computing from different areas of physics, physical chemistry, informatics and computer science. Each chapter is written in a self-contained manner and hence can be accessible for researchers and graduate students with even less background in the topics.
Notlar:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Elektronik Erişim:
Click to View
Ayırtma: Copies: