Essential Practical NMR for Organic Chemistry. için kapak resmi
Essential Practical NMR for Organic Chemistry.
Başlık:
Essential Practical NMR for Organic Chemistry.
Yazar:
Richards, S. A.
ISBN:
9780470976395
Yazar Ek Girişi:
Basım Bilgisi:
1st ed.
Fiziksel Tanımlama:
1 online resource (230 pages)
İçerik:
Essential Practical NMR for Organic Chemistry -- Contents -- Introduction -- 1 Getting Started -- 1.1 The Technique -- 1.2 Instrumentation -- 1.3 CW Systems -- 1.4 FT Systems -- 1.4.1 Origin of the Chemical Shift -- 1.4.2 Origin of 'Splitting' -- 1.4.3 Integration -- 2 Preparing the Sample -- 2.1 How Much Sample Do I Need? -- 2.2 Solvent Selection -- 2.2.1 Deutero Chloroform (CDCl3) -- 2.2.2 Deutero Dimethyl Sulfoxide (D6-DMSO) -- 2.2.3 Deutero Methanol (CD3OD) -- 2.2.4 Deutero Water (D2O) -- 2.2.5 Deutero Benzene (C6D6) -- 2.2.6 Carbon Tetrachloride (CCl4) -- 2.2.7 Trifluoroacetic Acid (CF3COOH) -- 2.2.8 Using Mixed Solvents -- 2.3 Spectrum Referencing (Proton NMR) -- 2.4 Sample Preparation -- 2.4.1 Filtration -- 3 Spectrum Acquisition -- 3.1 Number of Transients -- 3.2 Number of Points -- 3.3 Spectral Width -- 3.4 Acquisition Time -- 3.5 Pulse Width/Pulse Angle -- 3.6 Relaxation Delay -- 3.7 Number of Increments -- 3.8 Shimming -- 3.9 Tuning and Matching -- 3.10 Frequency Lock -- 3.10.1 Run Unlocked -- 3.10.2 Internal Lock -- 3.10.3 External Lock -- 3.11 To Spin or Not to Spin? -- 4 Processing -- 4.1 Introduction -- 4.2 Zero Filling and Linear Prediction -- 4.3 Apodization -- 4.4 Fourier Transformation -- 4.5 Phase Correction -- 4.6 Baseline Correction -- 4.7 Integration -- 4.8 Referencing -- 4.9 Peak Picking -- 5 Interpreting Your Spectrum -- 5.1 Common Solvents and Impurities -- 5.2 Group 1 - Exchangeables and Aldehydes -- 5.3 Group 2 - Aromatic and Heterocyclic Protons -- 5.3.1 Monosubstituted Benzene Rings -- 5.3.2 Multisubstituted Benzene Rings -- 5.3.3 Heterocyclic Ring Systems (Unsaturated) and Polycyclic Aromatic Systems -- 5.4 Group 3 - Double and Triple Bonds -- 5.5 Group 4 - Alkyl Protons -- 6 Delving Deeper -- 6.1 Chiral Centres -- 6.2 Enantiotopic and Diastereotopic Protons -- 6.3 Molecular Anisotropy -- 6.4 Accidental Equivalence.

6.5 Restricted Rotation -- 6.6 Heteronuclear Coupling -- 6.6.1 Coupling between Protons and 13C -- 6.6.2 Coupling between Protons and 19F -- 6.6.3 Coupling between Protons and 31P -- 6.6.4 Coupling between 1H and other Heteroatoms -- 6.6.5 Cyclic Compounds and the Karplus Curve -- 6.6.6 Salts, Free Bases and Zwitterions -- 7 Further Elucidation Techniques - Part 1 -- 7.1 Chemical Techniques -- 7.2 Deuteration -- 7.3 Basification and Acidification -- 7.4 Changing Solvents -- 7.5 Trifluoroacetylation -- 7.6 Lanthanide Shift Reagents -- 7.7 Chiral Resolving Agents -- 8 Further Elucidation Techniques - Part 2 -- 8.1 Instrumental Techniques -- 8.2 Spin Decoupling (Homonuclear, 1-D) -- 8.3 Correlated Spectroscopy (2-D) -- 8.4 Total Correlation Spectroscopy (1- and 2-D) -- 8.5 The Nuclear Overhauser Effect and Associated Techniques -- 9 Carbon-13 NMR Spectroscopy -- 9.1 General Principles and 1-D 13C -- 9.2 2-D Proton-Carbon (Single Bond) Correlated Spectroscopy -- 9.3 2-D Proton-Carbon (Multiple Bond) Correlated Spectroscopy -- 9.4 Piecing It All Together -- 9.5 Choosing the Right Tool -- 10 Some of the Other Tools -- 10.1 Linking HPLC with NMR -- 10.2 Flow NMR -- 10.3 Solvent Suppression -- 10.4 Magic Angle Spinning NMR -- 10.5 Other 2-D Techniques -- 10.5.1 INADEQUATE -- 10.5.2 J-Resolved -- 10.5.3 Diffusion Ordered Spectroscopy -- 10.6 3-D Techniques -- 11 Some of the Other Nuclei -- 11.1 Fluorine -- 11.2 Phosphorus -- 11.3 Nitrogen -- 12 Quantification -- 12.1 Introduction -- 12.2 Relative Quantification -- 12.3 Absolute Quantification -- 12.3.1 Internal Standards -- 12.3.2 External Standards -- 12.3.3 Electronic Reference -- 12.3.4 QUANTAS Technique -- 12.4 Things to Watch Out For -- 12.5 Conclusion -- 13 Safety -- 13.1 Magnetic Fields -- 13.2 Cryogens -- 13.3 Sample-Related Injuries -- 14 Software -- 14.1 Acquisition Software.

14.2 Processing Software -- 14.3 Prediction and Simulation Software -- 14.3.1 13C Prediction -- 14.3.2 1H Prediction -- 14.3.3 Simulation -- 14.3.4 Structural Verification Software -- 14.3.5 Structural Elucidation Software -- 15 Problems -- 15.1 Ten NMR Problems -- 15.2 Hints -- 15.3 Answers -- Glossary -- Index.
Özet:
Steve Richards graduated in Chemistry from Bangor University in 1977 and completed an MSc in Analytical Chemistry at Bristol in 1979. He joined Glaxo Group Research in 1980 and has worked in the NMR spectroscopy department ever since. He has run regular courses in NMR interpretation for new graduates and sandwich students within GSK since the late 80s. John Hollerton joined the GSK spectroscopy department in 1980. Having spent time working with other spectroscopic techniques, he has been focused on NMR spectroscopy since 1982. He is now the manager with a staff of thirteen scientists working under his direction. John has also lectured internationally on the subject on many occasions.
Notlar:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Elektronik Erişim:
Click to View
Ayırtma: Copies: