
Solid State Characterization of Pharmaceuticals.
Başlık:
Solid State Characterization of Pharmaceuticals.
Yazar:
Storey, Richard A.
ISBN:
9780470659359
Yazar Ek Girişi:
Basım Bilgisi:
1st ed.
Fiziksel Tanımlama:
1 online resource (528 pages)
İçerik:
Solid State Characterization of Pharmaceuticals -- Contents -- List of Contributors -- About the Editors -- Preface -- 1. Introduction to the Solid State - Physical Properties and Processes -- 1.1 Introduction -- 1.1.1 The Gas/Vapour and Liquid States -- 1.1.2 The Crystalline State -- 1.1.3 The Glassy State -- 1.2 Neutral Pharmaceutical Molecules -- 1.3 Thermodynamics and Phase Diagrams -- 1.3.1 Gibbs Phase Rule -- 1.3.2 One-Component (Unary) Systems -- 1.3.3 Two-Component (Binary) Systems -- 1.3.4 Three-Component (Ternary) Systems -- 1.4 Neutral Pharmaceutical Molecules in the Solid State -- 1.5 Salt Formation and Acid-Base Equilibrium -- 1.6 Polymorphs, Solvates and Mixed Crystals -- 1.6.1 Mixed Crystals -- 1.6.2 Solvates and Hydrates -- 1.7 Phase Transitions and Kinetics -- 1.7.1 Crystallization -- 1.7.2 Solid-to-Solid Phase Transitions -- 1.8 Screening for 'Polymorphs' (Ansolvates and Solvates) -- 1.9 Summary -- 1.10 Acknowledgements -- References -- 2. X-Ray Diffraction -- 2.1 Introduction -- 2.2 Generation and Properties of X-Rays -- 2.2.1 The Synchrotron -- 2.3 Crystal, Lattices, Unit Cells and Symmetry -- 2.3.1 Point Group Symmetry -- 2.3.2 Unit Cells and Crystal Lattices -- 2.3.3 Miller Indices -- 2.3.4 Space Group Symmetry -- 2.3.5 The Asymmetric Unit -- 2.4 The Interaction of X-rays with Crystals -- 2.4.1 X-rays and Atoms -- 2.4.2 X-Rays and Crystals -- 2.4.3 Determining Space Groups -- 2.5 Collecting Intensity Data for Single Crystals -- 2.6 Determining Crystal Structures -- 2.6.1 The Fundamental Equations of Crystallography and the Phase Problem -- 2.6.2 Data Resolution and Completeness -- 2.6.3 Methods of Solving Crystal Structures -- 2.6.4 Completing the Structure -- 2.6.5 Refinement and Validation -- 2.6.6 Small Crystals and the Synchrotron -- 2.6.7 Databases -- 2.6.8 Absolute Configuration -- 2.6.9 Polymorphism.
2.7 Powder Diffraction -- 2.7.1 Preferred Orientation -- 2.7.2 Data Collection -- 2.7.3 Qualitative Analysis: Pattern Matching -- 2.7.4 Compositions of Mixtures: Quantitative Analysis -- 2.7.5 Structure Solution from Powders -- 2.7.6 Powder Diffraction and Polymorphs -- 2.7.7 Nonambient Conditions -- 2.8 Amorphous Powders -- 2.9 Particle Size -- 2.10 Other Radiations: Neutrons and Electrons -- 2.10.1 Neutrons -- 2.10.2 Electrons -- References -- 3. Spectroscopic Characterization -- 3.1 Introduction and Theory -- 3.2 Electromagnetic Radiation -- 3.3 Vibrational Spectroscopy -- 3.3.1 Basic Instrument Configuration for Spectroscopy -- 3.4 Mid- and Near-Infrared Spectroscopy -- 3.4.1 Instrumentation -- 3.4.2 Attenuated Total Reflectance Spectrometry -- 3.4.3 Applications -- 3.4.4 Pharmaceutical Examples of the Use of ATR-FT-IR Spectroscopy -- 3.5 Near-Infrared Spectroscopy -- 3.5.1 Theory -- 3.5.2 Instrumentation -- 3.5.3 Qualitative and Quantitative Data Analysis -- 3.5.4 Pharmaceutical Applications -- 3.5.5 Polymorphism -- 3.5.6 Pseudopolymorphism, Hydrates and Solvates -- 3.5.7 Authentication of Medicines and Detection of Counterfeit and Clone Versions -- 3.5.8 Pharmaceutical Examples of the Use of NIR Spectrometry -- 3.6 Raman Spectroscopy -- 3.6.1 Theory -- 3.6.2 Instrumentation -- 3.6.3 Pharmaceutical Applications -- 3.6.4 Raman Spectrometry for Process Monitoring, Degradation, Stability and Crystallization -- 3.6.5 Polymorphism -- 3.6.6 Pseudopolymorphism -- 3.6.7 Process Analytical Technology -- 3.6.8 Raman Spectroscopy: Pharmaceutical Examples -- 3.7 Chemical Imaging and Mapping Microscopy -- 3.8 Nuclear Magnetic Resonance Spectroscopy -- 3.8.1 Pharmaceutical Applications -- 3.8.2 General Applications -- 3.8.3 Polymorphism -- 3.8.4 Drug Substance and Dosage Form Analysis -- 3.8.5 Conformation, Stereochemistry and Hydrogen Bonding Interactions.
3.9 Terahertz Pulsed Spectroscopy -- 3.9.1 Theory -- 3.9.2 Instrumentation -- 3.9.3 Sample and Instrument Preparation -- 3.9.4 Recent Developments in Instrumentation -- 3.9.5 Pharmaceutical Applications -- References -- 4. Thermal Analysis - Conventional Techniques -- 4.1 Introduction -- 4.2 Differential Scanning Calorimetry (DSC) -- 4.2.1 Heat Flow Measurements -- 4.2.2 Derivative Curves -- 4.2.3 General Practical Points -- 4.2.4 Encapsulation -- 4.2.5 Temperature Range -- 4.2.6 Scan Rate -- 4.2.7 The Instrumental Transient -- 4.2.8 Calibration -- 4.2.9 Factors Affecting Calibration -- 4.2.10 Double Furnace Design -- 4.2.11 Single Furnace Designs -- 4.2.12 Differential Thermal Analysis (DTA) -- 4.2.13 Modulated Temperature Profiles -- 4.2.14 Stepwise Methods -- 4.3 Thermogravimetric Analysis (TGA) -- 4.3.1 Instrument Design -- 4.3.2 TGA Calibration -- 4.3.3 Practical Points -- 4.3.4 Sample Interpretation -- 4.4 Dynamic Mechanical Analysis (DMA) -- 4.4.1 What is DMA? -- 4.4.2 How Does a DMA Work? -- 4.5 Determining the Melting Behaviour of Crystalline Solids -- 4.5.1 Evaluating the Melting Point Transition -- 4.5.2 Melting Point Determination for Identification of Samples -- 4.6 Polymorphism -- 4.6.1 Significance of Pharmaceutical Polymorphism -- 4.6.2 Thermodynamic and Kinetic Aspects of Polymorphism: Enantiotropy and Monotropy -- 4.6.3 Characterization of Polymorphs by DSC -- 4.6.4 Determining Polymorphic Purity by DSC -- 4.6.5 Interpretation of DSC Thermograms of Samples Exhibiting Polymorphism -- 4.7 Solvates and Hydrates (Pseudopolymorphism) -- 4.7.1 Factors Influencing DSC Curves of Hydrates and Solvates -- 4.7.2 Types of Desolvation/Dehydration -- 4.8 Evolved Gas Analysis (EGA) and Simultaneous Measurements -- 4.9 Amorphous Content -- 4.9.1 Introduction -- 4.9.2 Characterization of Amorphous Solids: The Glass Transition Temperature.
4.9.3 Quantification of Amorphous Content Using DSC -- 4.10 Purity Determination Using DSC -- 4.10.1 Types of Impurity -- 4.10.2 Differential Scanning Calorimetry Purity Method -- 4.10.3 Practical Issues and Potential Interferences -- 4.11 Excipient Compatibility -- 4.11.1 Excipient Compatibility Screening Using DSC -- References -- 5. Thermal Analysis - Dielectric Techniques -- 5.1 General Introduction -- 5.2 Common Background to the Techniques -- 5.3 Dielectric Spectroscopy -- 5.3.1 Interpretation of Data -- 5.3.2 Pharmaceutical Examples of Dielectric Spectroscopy -- 5.3.3 Analysis of Water Distribution and Mobility -- 5.3.4 Investigation of Molecular Mobility -- 5.3.5 Formulation, Characterization and Distribution of Materials -- 5.3.6 Experimental Issues -- 5.3.7 Advantages and Disadvantages of Dielectric Spectroscopy -- 5.4 Thermally Stimulated Current (TSC) Spectroscopy -- 5.4.1 Experimental Modes -- 5.4.2 Data Interpretation -- 5.4.3 Pharmaceutical Examples of the Use of TSC -- 5.4.4 Characterization of Amorphous Materials -- 5.4.5 Characterization of Polymorphic Materials -- 5.4.6 Experimental Issues -- 5.4.7 Advantages and Disadvantages of TSC -- 5.5 Overall Conclusions -- References -- 6. Isothermal Calorimetric Analysis -- 6.1 Introduction -- 6.1.1 Driving Forces - Thermodynamics -- 6.1.2 Kinetic Factors -- 6.2 Calorimetry: Principle of Measurement -- 6.2.1 Heat Conduction Isothermal Microcalorimetry -- 6.2.2 Power Compensation Isothermal Microcalorimetry -- 6.2.3 Instrumentation and Common Experiment Methodology -- 6.2.4 Calibration -- 6.3 Applications of IM for Characterization of Solid-State Pharmaceuticals -- 6.3.1 Detection and Characterization of Disorder in Processed Materials -- 6.3.2 Production of Amorphous Forms -- 6.3.3 Method 1: Direct Detection (Measurement) of Recrystallization.
6.3.4 Method 2: Indirect Detection of Recrystallization -- 6.4 Analysis of Solid-State Form Conversions -- 6.5 Analysis of Solid State Chemical Reactions -- 6.5.1 Solution Phase Reactions -- 6.6 Excipient Compatibility -- References -- 7. Calorimetric Methods - Solution Calorimetry -- 7.1 Introduction -- 7.2 The Principles of Solution Calorimetry -- 7.2.1 Semi-Adiabatic Solution Calorimeters -- 7.2.2 Heat-Conduction Calorimeters -- 7.2.3 Sample - Solvent Mixing -- 7.2.4 Calibration -- 7.3 Applications -- 7.3.1 Polymorphism -- 7.3.2 Determination of Degree of Crystallinity/Amorphous Content -- 7.3.3 Characterization of Interactions -- 7.3.4 Other Applications -- 7.4 Summary -- References -- 8. Vapour Sorption and Surface Analysis -- 8.1 Introduction -- 8.1.1 Background -- 8.1.2 Theory of Intermolecular Forces -- 8.1.3 Thermodynamics of Interfaces -- 8.1.4 Surface Energy -- 8.1.5 Comparison of Some Surface Characterization Methods -- 8.1.6 Solid State -- 8.2 Inverse Gas Chromatography -- 8.2.1 Introduction to IGC -- 8.2.2 Experimental Methodology -- 8.2.3 Theoretical Aspects of IGC -- 8.2.4 IGC Technique -- 8.2.5 Determination of Properties of Various Crystalline Forms -- 8.2.6 Surface Properties and Powder Processing -- 8.2.7 Recent Developments -- 8.2.8 Future Applications -- 8.3 Dynamic Vapour Sorption -- 8.3.1 Introduction -- 8.3.2 Fundamentals -- 8.3.3 Dynamic Vapour Sorption Instrumentation -- 8.3.4 Characterization of Solid State Materials -- 8.3.5 Gravimetric Dynamic Vapour Sorption Instruments Hyphenated With Other Analytical Methods -- 8.3.6 Amorphous Material Studies -- 8.3.7 Solute Permeability and Diffusion of Packaging Systems -- 8.3.8 Vapour Pressure Measurement Using Knudsen Effusion -- References -- 9. Microscopy -- 9.1 Introduction -- 9.2 The Microscope as an Analytical Tool -- 9.3 Which Microscope to Use? -- 9.4 Light Microscopy.
9.4.1 The Polarizing Light Microscope for Studying Solid-State Properties.
Özet:
The field of solid state characterization is central to the pharmaceutical industry, as drug products are, in an overwhelming number of cases, produced as solid materials. Selection of the optimum solid form is a critical aspect of the development of pharmaceutical compounds, due to their ability to exist in more than one form or crystal structure (polymorphism). These polymorphs exhibit different physical properties which can affect their biopharmaceutical properties. This book provides an up-to-date review of the current techniques used to characterize pharmaceutical solids. Ensuring balanced, practical coverage with industrial relevance, it covers a range of key applications in the field. The following topics are included: Physical properties and processes Thermodynamics Intellectual guidance X-ray diffraction Spectroscopy Microscopy Particle sizing Mechanical properties Vapour sorption Thermal analysis & Calorimetry Polymorph prediction Form selection.
Notlar:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Tür:
Elektronik Erişim:
Click to View