
Ceramics Science and Technology : Synthesis and Processing.
Başlık:
Ceramics Science and Technology : Synthesis and Processing.
Yazar:
Riedel, Ralf.
ISBN:
9783527631964
Yazar Ek Girişi:
Basım Bilgisi:
1st ed.
Fiziksel Tanımlama:
1 online resource (555 pages)
Seri:
Ceramics Science and Technology (VCH) Ser.
İçerik:
Ceramics Science and Technology -- Contents -- Preface -- List of Contributors -- Part I: Powders -- 1 Powder Compaction by Dry Pressing -- 1.1 Introduction -- 1.2 Fundamental Aspects of Dry Pressing -- 1.2.1 Die or Mold Filling Behavior of Powders -- 1.2.1.1 Particle Packing: A Static View -- 1.2.1.2 Practical Aspects of Die Filling With Granulates -- 1.2.2 Compaction Behavior -- 1.2.2.1 Compaction of Monolithic Powders -- 1.2.2.2 Compaction of Granulated Powders -- 1.2.2.3 Understanding Powder Compaction by Advanced Modeling -- 1.3 Practice of Uniaxial Compaction -- 1.3.1 Die Filling -- 1.3.2 Tooling Principles and Pressing Tools -- 1.3.3 Powder Compaction Presses -- 1.4 Practice of Isostatic Compaction -- 1.4.1 Wet-Bag Isostatic Pressing -- 1.4.2 Dry-Bag Isostatic Pressing -- 1.5 Granulation of Ceramic Powders -- 1.5.1 Spray-Drying -- 1.5.2 Alternative Spray Granulation Methods -- 1.5.3 Characterization of Ceramic Granulates -- References -- 2 Tape Casting -- 2.1 Use of the Tape Casting Process -- 2.2 Process Variations -- 2.3 Tape Casting Process -- 2.4 Components of the Slurry -- 2.4.1 Inorganic Raw Materials -- 2.4.2 Solvents -- 2.4.3 Organic Raw Materials -- 2.4.3.1 Dispersing Agents -- 2.4.3.2 Binder and Plasticizer -- 2.4.3.3 Other Additives -- 2.4.4 Interaction between Slurry Components -- 2.5 Preparation of the Slurry and its Properties -- 2.6 Tape Casting -- 2.6.1 Drying and Characteristics of the Green Tape -- 2.7 Machining, Metallization, and Lamination -- 2.8 Binder Burnout -- 2.9 Firing -- 2.10 Summary -- References -- 3 Hydrothermal Routes to Advanced Ceramic Powders and Materials -- 3.1 Introduction to Hydrothermal Synthesis -- 3.1.1 Fundamental De.nitions -- 3.1.2 Process Development and Industrial Production -- 3.1.3 Hydrothermal Hybrid Techniques -- 3.1.4 Physical and Chemical Advantages of Hydrothermal Solutions.
3.2 Engineering Ceramic Synthesis in Hydrothermal Solution -- 3.2.1 Phase Partitioning in Hydrothermal Systems -- 3.2.2 A Rational Approach for Engineering Hydrothermal Synthesis Methods -- 3.2.3 Thermodynamic Modeling -- 3.2.4 Examples of Synthesis Engineering -- 3.3 Materials Chemistry of Hydrothermal Ceramic Powders -- 3.3.1 Control of Chemical Composition -- 3.3.2 Physical Characteristics and their Control -- 3.4 Ceramics Processed from Hydrothermally Synthesized Powders -- 3.4.1 Synthesis of Modified Powders for Enhanced Sinterability -- 3.4.2 Powders for Sintered Dense Ceramics with Fine Grain Size -- 3.4.3 Sintered Porous Ceramics from Hydrothermally Synthesized Powders -- 3.4.4 Fabrication of Textured Ceramics from Hydrothermal Powders -- 3.4.5 In-Situ Hydrothermal Conversion and Hydrothermal Sintering -- 3.5 Summary -- References -- 4 Liquid Feed-Flame Spray Pyrolysis (LF-FSP) in the Synthesis of Single- and Mixed-Metal Oxide Nanopowders -- 4.1 Introduction -- 4.2 Basic Concepts of Nanopowder Formation During LF-FSP -- 4.2.1 Particle Size Distributions -- 4.2.2 Phase Formation -- 4.2.3 Phase Characterization -- 4.3 Can Nanoparticles Be Prepared That Consist of Mixed Phases? -- 4.3.1 The TiO2/Al2O3 System -- 4.3.2 Changing Band Gaps -- 4.4 Which Particle Morphologies Can be Accessed? -- 4.5 Can Nanopowders Be Doped? -- 4.5.1 Sinter-Resistant Materials -- 4.5.2 Laser Paints -- References -- 5 Sol-Gel Processing of Ceramics -- 5.1 Introduction -- 5.2 Principles of Sol-Gel Processing -- 5.3 Porous Materials -- 5.4 Hybrid Materials -- 5.5 Bioactive Sol-Gel Materials -- 5.5.1 In-Situ Encapsulation of Biomolecules -- 5.5.2 Bioactive Materials -- References -- Part II: Densification and Beyond -- 6 Sintering -- 6.1 Sintering Phenomena -- 6.2 Solid-State Sintering -- 6.2.1 Sintering Models and Kinetics with No Grain Growth.
6.2.1.1 Initial Stage Model and Kinetics -- 6.2.1.2 Intermediate and Final Stage Models and Kinetics -- 6.2.1.3 Grain Boundary Structure and Densification Kinetics -- 6.2.2 Grain Growth -- 6.2.2.1 Normal Grain Growth -- 6.2.2.2 Grain Growth in the Presence of Second-Phase Particles -- 6.2.2.3 Grain Growth with Boundary Segregation -- 6.2.2.4 Grain Growth Behavior with Boundary Structure -- 6.2.3 Microstructure Development -- 6.3 Liquid-Phase Sintering -- 6.3.1 Densification Models and Theories -- 6.3.1.1 Contact Flattening -- 6.3.1.2 Pore Filling -- 6.3.2 Grain Growth -- 6.3.3 Microstructure Development -- 6.4 Summary -- References -- 7 Hot Isostatic Pressing and Gas-Pressure Sintering -- 7.1 Introduction -- 7.2 Sintering Mechanisms with Applied Pressure -- 7.3 Silicon Nitride Ceramics: Comparison of Capsule HIP and Sinter-HIP Technology -- 7.3.1 Capsule HIP -- 7.3.2 Sinter-HIP -- 7.3.3 Differences between Capsule-HIP and Sinter-HIP -- 7.4 Other Applications -- 7.4.1 Structural Ceramics -- 7.4.2 Post-HIPing of Oxide Ceramics for Optical Applications -- References -- 8 Hot Pressing and Spark Plasma Sintering -- 8.1 Introduction -- 8.2 Advantages of Sintering Under a Uniaxial Pressure -- 8.3 Conventional Hot Presses -- 8.4 SPS Set-Up -- 8.5 Unique Features and Advantages of the SPS Process -- 8.6 The Role of High Pressure -- 8.7 The Role of Rapid and Effective Heating -- 8.8 The Role of Pulsed Direct Current -- 8.9 Microstructural Prototyping by SPS -- 8.9.1 Nanoceramics and Ceramics Nanocomposites -- 8.9.2 Self-Reinforced Ceramics -- 8.9.3 Superplasticity and Textured Ceramics -- 8.9.4 Non-Equilibrium Ceramic Composites -- 8.9.5 Ceramics with Macro- and Micro- Graded Structures -- 8.9.6 Hard-to-Make Ceramics -- 8.9.7 Defect-Engineered Ceramics -- 8.10 Potential Industrial Applications -- References -- 9 Fundamentals and Methods of Ceramic Joining.
9.1 Introduction -- 9.2 Basic Phenomena in Ceramic Joining -- 9.2.1 Mechanics -- 9.2.1.1 The Strength of Ceramics -- 9.2.1.2 Contact Stress -- 9.2.1.3 Residual Stress -- 9.2.1.4 Elastic Modulus Effects -- 9.2.1.5 Other Effects -- 9.2.1.6 Strength of Bonded Joints -- 9.2.2 Adhesion and Wetting -- 9.2.3 Diffusion -- 9.2.4 Chemical Reaction -- 9.3 Methods of Joining -- 9.3.1 Mechanical Joining -- 9.3.2 Direct Bonding -- 9.3.2.1 Solid-State Direct-Bonding Processes -- 9.3.2.2 Liquid-State Direct-Bonding Processes -- 9.3.3 Interlayer Bonding -- 9.3.3.1 Solid-State Interlayer Bonding Processes -- 9.3.3.2 Liquid-State Interlayer Bonding Processes -- 9.4 Conclusions -- References -- 10 Machining and Finishing of Ceramics -- 10.1 Introduction -- 10.2 Face and Profile Grinding -- 10.2.1 Process Description -- 10.2.2 Machining of Ceramics -- 10.3 Current Status and Future Prospects -- 10.4 Double-Face Grinding with Planetary Kinematics -- 10.4.1 Process Description -- 10.4.2 Machining of Ceramics -- 10.4.3 Current Status and Future Prospects -- 10.5 Ultrasonic-Assisted Grinding -- 10.5.1 Process Description -- 10.5.2 Machining of Ceramics -- 10.5.3 Current Status and Future Prospects -- 10.6 Abrasive Flow Machining -- 10.6.1 Process Description -- 10.6.2 Machining of Ceramics -- 10.6.3 Current Status and Future Prospects -- 10.7 Outlook -- References -- Part III: Films and Coatings -- 11 Vapor-Phase Deposition of Oxides -- 11.1 Introduction -- 11.1.1 Sputter Deposition -- 11.1.2 Pulsed-Laser Deposition -- 11.1.3 Oxide Molecular Beam Epitaxy -- 11.2 Summary -- References -- 12 Metal-Organic Chemical Vapor Deposition of Metal Oxide Films and Nanostructures -- 12.1 Introduction -- 12.2 Metal Oxide Film Deposition -- 12.2.1 Physical and Chemical Vapor Deposition Techniques -- 12.2.2 Chemical Vapor Deposition -- 12.2.2.1 Thermally Activated CVD (TA-CVD).
12.2.2.2 Plasma-Enhanced CVD (PE-CVD) -- 12.2.2.3 Molecule-Based CVD (MB-CVD) -- 12.2.3 Atomic Layer Deposition -- 12.2.4 Growth Dynamics -- 12.2.4.1 Amorphous Growth -- 12.2.4.2 Epitaxial Growth -- 12.2.4.3 Polycrystalline Growth -- 12.2.5 Mechanistic Aspects of CVD -- 12.3 The Precursor Concept in CVD -- 12.3.1 Precursor Requisites -- 12.3.2 Precursor-Material Relationship -- 12.3.3 Influence of Precursor Flow Rate on Microstructure and Growth -- 12.4 Metal Oxide Coatings -- 12.4.1 Monometallic Precursor (MOx) Systems -- 12.4.2 Bimetallic Precursor (MM.Ox) Systems -- 12.4.3 Composites (MOx/M.Oy) Systems -- 12.5 Summary -- References -- Part IV: Manufacturing Technology -- 13 Powder Characterization -- 13.1 Introduction -- 13.1.1 Accuracy Versus Precision and Instrument Resolution -- 13.1.2 Sampling -- 13.2 Chemical Composition and Surface Characterization -- 13.2.1 Bulk Elemental Identi.cation -- 13.2.1.1 Optical Absorption Spectroscopy -- 13.2.1.2 Electron and X-Ray Microanalysis -- 13.2.1.3 Infrared Spectroscopy -- 13.2.1.4 Raman Spectroscopy -- 13.2.1.5 Nuclear Magnetic Resonance Spectroscopy -- 13.2.1.6 Detailed Depth Profiling of Elemental Distribution within a Particle -- 13.2.2 Surface Characterization -- 13.2.2.1 Surface Chemistry Analysis -- 13.2.2.2 Vacuum Techniques -- 13.2.2.3 Specific Surface Area of Particles -- 13.2.2.4 Electrokinetic Potential or Zeta-Potential -- 13.2.3 Crystallographic Identification -- 13.3 Particle Sizing and Data Interpretation -- 13.3.1 Particles Types -- 13.3.2 Particle Shapes -- 13.3.3 General Methods -- 13.3.4 Light Scattering Techniques -- 13.3.5 Sedimentation Analysis -- 13.3.6 Coulter Counter -- 13.3.7 Image-Based Analysis -- 13.3.8 Sieve Analysis -- 13.3.8.1 Dry Sieving -- 13.3.8.2 Wet Sieving -- 13.4 Physical Properties -- 13.4.1 Particle Density -- 13.4.1.1 Particle Density Definition.
13.4.1.2 Particle Density Measurement.
Özet:
Although ceramics have been known to mankind literally for millennia, research has never ceased. Apart from the classic uses as a bulk material in pottery, construction, and decoration, the latter half of the twentieth century saw an explosive growth of application fields, such as electrical and thermal insulators, wear-resistant bearings, surface coatings, lightweight armour, or aerospace materials. In addition to plain, hard solids, modern ceramics come in many new guises such as fabrics, ultrathin films, microstructures and hybrid composites. Built on the solid foundations laid down by the 20-volume series Materials Science and Technology, Ceramics Science and Technology picks out this exciting material class and illuminates it from all sides. Materials scientists, engineers, chemists, biochemists, physicists and medical researchers alike will find this work a treasure trove for a wide range of ceramics knowledge from theory and fundamentals to practical approaches and problem solutions.
Notlar:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Konu Başlığı:
Tür:
Yazar Ek Girişi:
Elektronik Erişim:
Click to View