
Principles and Applications of Lithium Secondary Batteries.
Başlık:
Principles and Applications of Lithium Secondary Batteries.
Yazar:
Park, Jung-Ki.
ISBN:
9783527650439
Yazar Ek Girişi:
Basım Bilgisi:
1st ed.
Fiziksel Tanımlama:
1 online resource (382 pages)
İçerik:
Principles and Applications of Lithium Secondary Batteries -- Contents -- List of Contributors -- Preface -- 1 Introduction -- 1.1 History of Batteries -- 1.2 Development of Cell Technology -- 1.3 Overview of Lithium Secondary Batteries -- 1.4 Future of Lithium Secondary Batteries -- References -- 2 The Basic of Battery Chemistry -- 2.1 Components of Batteries -- 2.1.1 Electrochemical Cells and Batteries -- 2.1.2 Battery Components and Electrodes -- 2.1.3 Full Cells and Half Cells -- 2.1.4 Electrochemical Reaction and Electric Potential -- 2.2 Voltage and Current of Batteries -- 2.2.1 Voltage -- 2.2.2 Current -- 2.2.3 Polarization -- 2.3 Battery Characteristics -- 2.3.1 Capacity -- 2.3.2 Energy Density -- 2.3.3 Power -- 2.3.4 Cycle Life -- 2.3.5 Discharge Curves -- 3 Materials for Lithium Secondary Batteries -- 3.1 Cathode Materials -- 3.1.1 Development History of Cathode Materials -- 3.1.2 Overview of Cathode Materials -- 3.1.2.1 Redox Reaction of Cathode Materials -- 3.1.2.2 Discharge Potential Curves -- 3.1.2.3 Demand Characteristics of Cathode Materials -- 3.1.2.4 Major Cathode Materials -- 3.1.3 Structure and Electrochemical Properties of Cathode Materials -- 3.1.3.1 Layered Structure Compounds -- 3.1.3.2 Spinel Composites -- 3.1.3.3 Olivine Composites -- 3.1.3.4 Vanadium Composites -- 3.1.4 Performance Improvement by Surface Modification -- 3.1.4.1 Layered Structure Compounds -- 3.1.4.2 Spinel Compound -- 3.1.4.3 Olivine Compounds -- 3.1.5 Thermal Stability of Cathode Materials -- 3.1.5.1 Basics of Battery Safety -- 3.1.5.2 Battery Safety and Cathode Materials -- 3.1.5.3 Thermal Stability of Cathodes -- 3.1.6 Prediction of Cathode Physical Properties and Cathode Design -- 3.1.6.1 Understanding of First-Principles Calculation -- 3.1.6.2 Prediction and Investigation of Electrode Physical Properties Using First-Principles Calculation.
References -- 3.2 Anode Materials -- 3.2.1 Development History of Anode Materials -- 3.2.2 Overview of Anode Materials -- 3.2.3 Types and Electrochemical Characteristics of Anode Materials -- 3.2.3.1 Lithium Metal -- 3.2.3.2 Carbon Materials -- 3.2.3.3 Noncarbon Materials -- 3.2.4 Conclusions -- References -- 3.3 Electrolytes -- 3.3.1 Liquid Electrolytes -- 3.3.1.1 Requirements of Liquid Electrolytes -- 3.3.1.2 Components of Liquid Electrolytes -- 3.3.1.3 Characteristics of Liquid Electrolytes -- 3.3.1.4 Ionic Liquids -- 3.3.1.5 Electrolyte Additives -- 3.3.1.6 Enhancement of Thermal Stability for Electrolytes -- 3.3.1.7 Development Trends of Liquid Electrolytes -- 3.3.2 Polymer Electrolytes -- 3.3.2.1 Types of Polymer Electrolytes -- 3.3.2.2 Preparation of Polymer Electrolytes -- 3.3.2.3 Characteristics of Polymer Electrolytes -- 3.3.2.4 Development Trends of Polymer Electrolytes -- 3.3.3 Separators -- 3.3.3.1 Separator Functions -- 3.3.3.2 Basic Characteristics of Separators -- 3.3.3.3 Effects of Separators on Battery Assembly -- 3.3.3.4 Oxidative Stability of Separators -- 3.3.3.5 Thermal Stability of Separators -- 3.3.3.6 Development of Separator Materials -- 3.3.3.7 Separator Manufacturing Process -- 3.3.3.8 Prospects for Separators -- 3.3.4 Binders, Conducting Agents, and Current Collectors -- 3.3.4.1 Binders -- 3.3.4.2 Conducting Agents -- 3.3.4.3 Current Collectors -- References -- 3.4 Interfacial Reactions and Characteristics -- 3.4.1 Electrochemical Decomposition of Nonaqueous Electrolytes -- 3.4.2 SEI Formation at the Electrode Surface -- 3.4.3 Anode-Electrolyte Interfacial Reactions -- 3.4.3.1 Lithium Metal-Electrolyte Interfacial Reactions -- 3.4.3.2 Interfacial Reactions at Graphite (Carbon) -- 3.4.3.3 SEI Layer Thickness -- 3.4.3.4 Effect of Additives -- 3.4.3.5 Interfacial Reactions between a Noncarbonaceous Anode and Electrolytes.
3.4.4 Cathode-Electrolyte Interfacial Reactions -- 3.4.4.1 Native Surface Layers of Oxide Cathode Materials -- 3.4.4.2 SEI Layers of Oxide Cathodes -- 3.4.4.3 Interfacial Reactions at Oxide Cathodes -- 3.4.4.4 Interfacial Reactions of Phosphate Cathode Materials -- 3.4.5 Current Collector-Electrolyte Interfacial Reactions -- 3.4.5.1 Native Layer of Aluminum -- 3.4.5.2 Corrosion of Aluminum -- 3.4.5.3 Formation of Passive Layers on Aluminum Surface -- References -- 4 Electrochemical and Material Property Analysis -- 4.1 Electrochemical Analysis -- 4.1.1 Open-Circuit Voltage -- 4.1.2 Linear Sweep Voltammetry -- 4.1.3 Cyclic Voltammetry -- 4.1.4 Constant Current (Galvanostatic) Method -- 4.1.4.1 Cutoff Voltage Control -- 4.1.4.2 Constant Capacity Cutoff Control -- 4.1.5 Constant Voltage (Potentiostatic) Method -- 4.1.5.1 Constant Voltage Charging -- 4.1.5.2 Potential Stepping Test -- 4.1.6 GITT and PITT -- 4.1.6.1 GITT -- 4.1.6.2 PITT -- 4.1.7 AC Impedance Analysis -- 4.1.7.1 Principle -- 4.1.7.2 Equivalent Circuit Model -- 4.1.7.3 Applications in Electrode Characteristic Analysis -- 4.1.7.4 Applications in Al/LiCoO2/Electrolyte/Carbon/Cu Battery Analysis -- 4.1.7.5 Applications in Al/LiCoO2/Electrolyte/MCMB/Cu Cell Analysis -- 4.1.7.6 Relative Permittivity -- 4.1.7.7 Ionic Conductivity -- 4.1.7.8 Diffusion Coefficient -- 4.1.8 EQCM Analysis -- References -- 4.2 Material Property Analysis -- 4.2.1 X-ray Diffraction Analysis -- 4.2.1.1 Principle of X-ray Diffraction Analysis -- 4.2.1.2 Rietveld Refinement -- 4.2.1.3 In Situ XRD -- 4.2.2 FTIR and Raman Spectroscopy -- 4.2.2.1 FTIR Spectroscopy -- 4.2.2.2 Raman Spectroscopy -- 4.2.3 Solid-State Nuclear Magnetic Resonance Spectroscopy -- 4.2.4 X-ray Photoelectron Spectroscopy (XPS) -- 4.2.5 X-ray Absorption Spectroscopy (XAS) -- 4.2.5.1 X-ray Absorption Near-Edge Structure (XANES).
4.2.5.2 Extended X-ray Absorption Fine Structure (EXAFS) -- 4.2.6 Transmission Electron Microscopy (TEM) -- 4.2.7 Scanning Electron Microscopy (SEM) -- 4.2.8 Atomic Force Microscopy (AFM) -- 4.2.9 Thermal Analysis -- 4.2.10 Gas Chromatography-Mass spectrometry (GC-MS) -- 4.2.11 Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) -- 4.2.12 Brunauer-Emmett-Teller (BET) Surface Analysis -- References -- 5 Battery Design and Manufacturing -- 5.1 Battery Design -- 5.1.1 Battery Capacity -- 5.1.2 Electrode Potential and Battery Voltage Design -- 5.1.3 Design of Cathode/Anode Capacity Ratio -- 5.1.4 Practical Aspects of Battery Design -- 5.2 Battery Manufacturing Process -- 5.2.1 Electrode Manufacturing Process -- 5.2.1.1 Preparation of Electrode Slurry -- 5.2.1.2 Electrode Coating -- 5.2.1.3 Roll Pressing Process -- 5.2.1.4 Slitting Process -- 5.2.1.5 Vacuum Drying Process -- 5.2.2 Assembly Process -- 5.2.2.1 Winding Process -- 5.2.2.2 Jelly Roll Insertion/Cathode Tab Welding/Beading Process -- 5.2.2.3 Electrolyte Injection Process -- 5.2.2.4 Cathode Tab Welding/Crimping/X-Ray Inspection/Washing Process -- 5.2.3 Formation Process -- 5.2.3.1 Purpose of the Formation Process -- 5.2.3.2 Procedures and Functions -- References -- 6 Battery Performance Evaluation -- 6.1 Charge and Discharge Curves of Cells -- 6.1.1 Significance of Charge and Discharge Curves -- 6.1.2 Adjustment of Charge/Discharge Curves -- 6.1.3 Overcharging and Charge/Discharge Curves -- 6.2 Cycle Life of Batteries -- 6.2.1 Significance of Cycle Life -- 6.2.2 Factors Affecting Battery Cycle Life -- 6.3 Battery Capacity -- 6.3.1 Introduction -- 6.3.2 Battery Capacity -- 6.3.3 Measurement of Battery Capacity -- 6.4 Discharge Characteristics by Discharge Rate -- 6.5 Temperature Characteristics -- 6.5.1 Low-Temperature Characteristics -- 6.5.2 High-Temperature Characteristics.
6.6 Energy and Power Density (Gravimetric/Volumetric) -- 6.6.1 Energy Density -- 6.6.2 Power Density -- 6.7 Applications -- 6.7.1 Mobile Device Applications -- 6.7.2 Transportation -- 6.7.3 Others -- Index.
Özet:
Lithium secondary batteries have been key to mobile electronics since 1990. Large-format batteries typically for electric vehicles and energy storage systems are attracting much attention due to current energy and environmental issues. Lithium batteries are expected to play a central role in boosting green technologies. Therefore, a large number of scientists and engineers are carrying out research and development on lithium secondary batteries. The book is written in a straightforward fashion suitable for undergraduate and graduate students, as well as scientists, and engineers starting out in the field. The chapters in this book have been thoroughly edited by a collective of experts to achieve a cohesive book with a consistent style, level, and philosophy. They cover a wide range of topics, including principles and technologies of key materials such as the cathode, anode, electrolyte, and separator. Battery technologies such as design, manufacturing processes, and evaluation methods as well as applications are addressed. In addition, analytical methods for determining electrochemical and other properties of batteries are also included. Hence, this book is a must-have for everyone interested in obtaining all the basic information on lithium secondary batteries.
Notlar:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Tür:
Yazar Ek Girişi:
Elektronik Erişim:
Click to View