
Digital Color Imaging.
Başlık:
Digital Color Imaging.
Yazar:
Fernandez-Maloigne, Christine.
ISBN:
9781118614341
Yazar Ek Girişi:
Basım Bilgisi:
1st ed.
Fiziksel Tanımlama:
1 online resource (368 pages)
Seri:
Iste
İçerik:
Cover -- Title Page -- Copyright Page -- Table of Contents -- Foreword -- Chapter 1. Color Representation and Processing in Polar Color Spaces -- 1.1. Introduction -- 1.1.1. Notations used in this chapter -- 1.2. The HSI triplet -- 1.2.1. Intuitive approach: basic concepts and state of the art -- 1.2.2. Geometric approach: calculation of polar coordinates -- 1.3. Processing of hue: a variable on the unit circle -- 1.3.1. Can hue be represented as a scalar? -- 1.3.2. Ordering based on distance from a reference hue -- 1.3.3. Ordering with multiple references -- 1.3.4. Determination of reference hues -- 1.4. Color morphological filtering in the HSI space -- 1.4.1. Chromatic and achromatic top-hat transforms -- 1.4.2. Full ordering using lexicographical cascades -- 1.5. Morphological color segmentation in the HSI space -- 1.5.1. Color distances and segmentation by connective criteria -- 1.5.2. Color gradients and watershed segmentation -- 1.6. Conclusion -- 1.7. Bibliography -- Chapter 2. Adaptive Median Color Filtering -- 2.1. Introduction -- 2.2. Noise -- 2.2.1. Sources of noise -- 2.2.2. Noise modeling -- 2.3. Nonlinear filtering -- 2.3.1. Vector methods -- 2.3.2. Median filter using bit mixing -- 2.4. Median filter: methods derived from vector methods -- 2.4.1. Vector filtering -- 2.4.2. Switching vector and peer group filters -- 2.4.3. Hybrid switching vector filter -- 2.4.4. Fuzzy filters -- 2.5. Adaptive filters -- 2.5.1. Spatially adaptive filter: generic method -- 2.5.2. Spatially adaptive median filter -- 2.6. Performance comparison -- 2.6.1. FSVF -- 2.6.2. FRF -- 2.6.3. PGF and FMPGF -- 2.6.4. IPGSVF -- 2.6.5. Vector filters and spatially adaptive median filter -- 2.7. Conclusion -- 2.8. Bibliography -- Chapter 3. Anisotropic Diffusion PDEs for Regularization of Multichannel Images: Formalisms and Applications -- 3.1. Introduction.
3.2. Preliminary concepts -- 3.3. Local geometry in multi-channel images -- 3.3.1. Which geometric characteristics? -- 3.3.2. Geometry estimated using a scalar characteristic -- 3.3.3. Di Zenzo multi-valued geometry -- 3.4. PDEs for multi-channel image smoothing: overview -- 3.4.1. Variational methods -- 3.4.2. Divergence PDEs -- 3.4.3. Oriented Laplacian PDEs -- 3.4.4. Trace PDEs -- 3.5. Regularization and curvature preservation -- 3.5.1. Single smoothing direction -- 3.5.2. Analogy with line integral convolutions -- 3.5.3. Extension to multi-directional smoothing -- 3.6. Numerical implementation -- 3.7. Some applications -- 3.8. Conclusion -- 3.9. Bibliography -- Chapter 4. Linear Prediction in Spaces with Separate Achromatic and Chromatic Information -- 4.1. Introduction -- 4.2. Complex vector 2D linear prediction -- 4.3. Spectral analysis in the IHLS and L*a*b* color spaces -- 4.3.1. Comparison of PSD estimation methods -- 4.3.2. Study of inter-channel interference associated with color space changing transformations -- 4.4. Application to segmentation of textured color images -- 4.4.1. Prediction error distribution -- 4.4.2. Label field estimation -- 4.4.3. Experiments and results -- 4.5. Conclusion -- 4.6. Bibliography -- Chapter 5. Region Segmentation -- 5.1. Introduction -- 5.2. Compact histograms -- 5.2.1. Classical multi-dimensional histogram -- 5.2.2. Compact multi-dimensional histogram -- 5.2.3. Pixel classification through compact histogram analysis -- 5.3. Spatio-colorimetric classification -- 5.3.1. Introduction -- 5.3.2. Joint analysis -- 5.3.3. Successive analysis -- 5.3.4. Conclusion -- 5.4. Segmentation by graph analysis -- 5.4.1. Graphs and color images -- 5.4.2. Semi-supervised classification using graphs -- 5.4.3. Spectral classification applied to color image segmentation.
5.5. Evaluation of segmentation methods against a "ground truth" -- 5.6. Conclusion -- 5.7. Bibliography -- Chapter 6. Color Texture Attributes -- 6.1. Introduction -- 6.1.1. Concept of color texture -- 6.1.2. Color texture feature specificities -- 6.1.3. Image databases -- 6.1.4. Applications involving color texture characterization -- 6.2. Statistical features -- 6.2.1. Statistical features describing color distribution -- 6.2.2. Second-order statistical features -- 6.2.3. Higher-order statistical features -- 6.2.4. Conclusion -- 6.3. Spatio-frequential features -- 6.3.1. Gabor transform -- 6.3.2. Wavelet transform -- 6.4. Stochastic modeling -- 6.4.1. Markov fields -- 6.4.2. Linear prediction models -- 6.5. Color texture classification -- 6.5.1. Color and texture approaches -- 6.5.2. Color texture and choice of color space -- 6.5.3. Experimental results -- 6.6. Conclusion -- 6.7. Bibliography -- Chapter 7. Photometric Color Invariants for Object Recognition -- 7.1. Introduction -- 7.1.1. Object recognition -- 7.1.2. Compromise between discriminating power and invariance -- 7.1.3. Content of this chapter -- 7.2. Basic assumptions -- 7.2.1. Hypotheses on color formation -- 7.2.2. Assumptions on the reflective properties of surface elements -- 7.2.3. Assumptions on camera sensor responses -- 7.2.4. Assumptions on the characteristics of the illumination -- 7.2.5. Hypotheses of the photometric and radiometric variation model -- 7.3. Color invariant characteristics -- 7.3.1. Inter- and intra-component color ratios -- 7.3.2. Transformations based on analysis of colorimetric distributions -- 7.3.3. Invariant derivatives -- 7.4. Conclusion -- 7.5. Bibliography -- Chapter 8. Color Key Point Detectors and Local Color Descriptors -- 8.1. Introduction -- 8.2. Color key point and region detectors -- 8.2.1. Detector quality criteria -- 8.2.2. Color key points.
8.2.3. Color key regions -- 8.2.4. Simulation of human visual system -- 8.2.5. Learning for detection -- 8.3. Local color descriptors -- 8.3.1. Concatenation of two types of descriptors -- 8.3.2. Two successive stages for image comparison -- 8.3.3. Parallel comparisons -- 8.3.4. Spatio-colorimetric descriptors -- 8.4. Conclusion -- 8.5. Bibliography -- Chapter 9. Motion Estimation in Color Image Sequences -- 9.1. Introduction -- 9.2. Extension of classical motion estimation techniques to color image spaces -- 9.2.1. Luminance images and optical flow -- 9.2.2. Estimation of optical flow in color spaces -- 9.3. Apparent motion and vector images -- 9.3.1. Motion and structure tensor in the scalar case -- 9.3.2. Stability of tensor spectral directions -- 9.3.3. Vector approach to optical flow -- 9.4. Conclusion -- 9.5. Bibliography -- Appendix A. Appendix to Chapter 7: Summary of Hypotheses and Color Characteristic Invariances -- A.1. Bibliography -- List of Authors -- Index.
Özet:
This collective work identifies the latest developments in the field of the automatic processing and analysis of digital color images. For researchers and students, it represents a critical state of the art on the scientific issues raised by the various steps constituting the chain of color image processing. It covers a wide range of topics related to computational color imaging, including color filtering and segmentation, color texture characterization, color invariant for object recognition, color and motion analysis, as well as color image and video indexing and retrieval. Contents 1. Color Representation and Processing in Polar Color Spaces, Jesús Angulo, Sébastien Lefèvre and Olivier Lezoray. 2. Adaptive Median Color Filtering, Frédérique Robert-Inacio and Eric Dinet. 3. Anisotropic Diffusion PDEs for Regularization of Multichannel Images: Formalisms and Applications, David Tschumperlé. 4. Linear Prediction in Spaces with Separate Achromatic and Chromatic Information,Olivier Alata, Imtnan Qazi, Jean-Christophe Burie and Christine Fernandez-Maloigne. 5. Region Segmentation, Alain Clément, Laurent Busin, Olivier Lezoray and Ludovic Macaire. 6. Color Texture Attributes, Nicolas Vandenbroucke, Olivier Alata, Christèle Lecomte, Alice Porebski and Imtnan Qazi. 7. Photometric Color Invariants for Object Recognition, Damien Muselet. 8. Color Key Point Detectors and Local Color Descriptors, Damien Muselet and Xiaohu Song. 9. Motion Estimation in Color Image Sequences, Bertrand Augereau and Jenny Benois-Pineau.
Notlar:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Tür:
Elektronik Erişim:
Click to View