
Non-Smooth Deterministic or Stochastic Discrete Dynamical Systems : Applications to Models with Friction or Impact.
Başlık:
Non-Smooth Deterministic or Stochastic Discrete Dynamical Systems : Applications to Models with Friction or Impact.
Yazar:
Bastien, Jerome.
ISBN:
9781118604328
Yazar Ek Girişi:
Basım Bilgisi:
1st ed.
Fiziksel Tanımlama:
1 online resource (514 pages)
Seri:
Iste
İçerik:
Title Page -- Contents -- Introduction -- Chapter 1. Some Simple Examples -- 1.1. Introduction -- 1.2. Frictions -- 1.2.1. Coulomb's law -- 1.2.2. Differential equation with univalued operator and usual sign -- 1.2.3. Differential equation with multivalued term: differential inclusion -- 1.2.4. Other friction laws -- 1.3. Impact -- 1.3.1. Difficulties with writing the differential equation -- 1.3.2. Ill-posed problems -- 1.4. Probabilistic context -- Chapter 2. Theoretical Deterministic Context -- 2.1. Introduction -- 2.2. Maximal monotone operators and first result on differential inclusions (in R) -- 2.2.1. Graphs (operators) definitions -- 2.2.2. Maximal monotone operators -- 2.2.3. Convex function, sub-differentials and operators -- 2.2.4. Resolvent and regularization -- 2.2.5. Taking the limit -- 2.2.6. First result of existence and uniqueness for a differential inclusion -- 2.3. Extension to any Hilbert space -- 2.4. Existence and uniqueness results in Hilbert space -- 2.5. Numerical scheme in a Hilbert space -- 2.5.1. The numerical scheme -- 2.5.2. State of the art summary and results shown in this publication -- 2.5.3. Convergence (general results and order 1/2) -- 2.5.4. Convergence (order one) -- 2.5.5. Change of scalar product -- 2.5.6. Resolvent calculation -- 2.5.7. More regular schemes -- Chapter 3. Stochastic Theoretical Context -- 3.1. Introduction -- 3.2. Stochastic integral -- 3.2.1. The stochastic processes background -- 3.2.2. Stochastic integral -- 3.3. Stochastic differential equations -- 3.3.1. Existence and uniqueness of strong solution -- 3.3.2. Existence and uniqueness of weak solution -- 3.3.3. Kolmogorov and Fokker-Planck equations -- 3.4. Multivalued stochastic differential equations -- 3.4.1. Problem statement -- 3.4.2. Uniqueness and existence results -- 3.5. Numerical scheme.
3.5.1. Which convergence: weak or strong? -- 3.5.2. Strong convergence results -- 3.5.3. Weak convergence results -- Chapter 4. Riemannian Theoretical Context -- 4.1. Introduction -- 4.2. First or second order -- 4.3. Differential geometry -- 4.3.1. Sphere case -- 4.3.2. General case -- 4.4. Dynamics of the mechanical systems -- 4.4.1. Definition of mechanical system -- 4.4.2. Equation of the dynamics -- 4.5. Connection, covariant derivative, geodesics and parallel transport -- 4.6. Maximal monotone term -- 4.7. Stochastic term -- 4.8. Results on the existence and uniqueness of a solution -- Chapter 5. Systems with Friction -- 5.1. Introduction -- 5.2. Examples of frictional systems with a finite number of degrees of freedom -- 5.2.1. General framework -- 5.2.2. Two elementary models -- 5.2.3. Assembly and results in finite dimensions -- 5.2.4. Conclusion -- 5.2.5. Examples of numerical simulation -- 5.2.6. Identification of the generalized Prandtl model (principles and simulation) -- 5.3. Another example: the case of a pendulum with friction -- 5.3.1. Formulation of the problem, existence and uniqueness -- 5.3.2. Numerical scheme -- 5.3.3. Numerical estimation of the order -- 5.3.4. Example of numerical simulations -- 5.3.5. Free oscillations -- 5.3.6. Forced oscillations -- 5.3.7. Transition matrix and calculation of the Lyapunov exponents -- 5.3.8. Melnikov's method, transitory chaos and Lyapunov exponents -- 5.4. Elastoplastic oscillator under a stochastic forcing -- 5.4.1. Introduction -- 5.4.2. Modeling -- 5.4.3. Numerical scheme -- 5.4.4. Numerical results -- 5.5. Spherical pendulum under a stochastic external force -- 5.5.1. Establishment of the model -- 5.5.2. Numerical aspects -- 5.6. Gephyroidal model -- 5.6.1. Introduction -- 5.6.2. Description and transformation of the model -- 5.6.3. Quasi-static problems -- 5.6.4. Numerical simulations.
5.6.5. Conclusion -- 5.7. Chain -- 5.7.1. Introduction -- 5.7.2. Description of the model -- 5.7.3. Transformation of the equations -- 5.7.4. Conclusion -- 5.8. An infinity of internal variables: continuous generalized Prandtl model -- 5.8.1. Introduction -- 5.8.2. Description of the continuous model -- 5.8.3. Existence, uniqueness and regularity results -- 5.8.4. Application to the discrete case, and convergence of the discrete model to the continuous model -- 5.8.5. Numerical scheme -- 5.8.6. Study of hysteresis loops -- 5.8.7. Numerical simulations -- 5.9. Locally Lipschitz continuous spring -- 5.9.1. Introduction -- 5.9.2. The studied model -- 5.9.3. Results for the existence and uniqueness of the solutions -- 5.9.4. Convergence results for the numerical schemes -- 5.9.5. The locally Lipschitz continuous case -- 5.9.6. Identification of the parameters from the hysteresis loops -- 5.9.7. Numerical simulations -- Chapter 6. Impact Systems -- 6.1. Existence and uniqueness for simple problems (one degree of freedom) -- 6.1.1. The work of Schatzman-Paoli -- 6.1.2. Simple case with one degree of freedom, forcing and impact: piecewise analytical solutions -- 6.1.3. Adaptation of some classical methods -- 6.1.4. Movement with the accumulation of impacts and a sticking phase -- 6.1.5. Behavior of the numerical methods -- 6.1.6. Convergence and order of one-step numerical methods applied to non-smooth differential systems -- 6.1.7. Results of numerical experiments -- 6.2. A particular behavior: grazing bifurcation -- 6.2.1. Approximation of the map in the general case -- 6.2.2. Particular case -- 6.2.3. Stability of the non-differentiable fixed point -- 6.2.4. Numerical example -- Chapter 7. Applications-Extensions -- 7.1. Oscillators with piecewise linear coupling and passive control -- 7.1.1. Description of the model.
7.1.2. Free oscillations of the system -- 7.1.3. Order є1 -- 7.1.4. Case of periodic forcing -- 7.1.5. Conclusion -- 7.2. Friction and passive control -- 7.2.1. Introduction -- 7.2.2. Introduction to the models: smooth and non-smooth systems -- 7.3. The billiard ball -- 7.3.1. Maximal monotone framework -- 7.3.2. More realistic but non-maximal monotone framework -- 7.4. An industrial application: the case of a belt tensioner -- 7.4.1. The theory -- 7.4.2. The tensioner used -- 7.4.3. Identification of the parameters -- 7.4.4. Validation -- 7.5. Problems with delay and memory -- 7.5.1. Theory -- 7.5.2. Applications -- 7.6. Other friction forces -- 7.6.1. More general forms (variable dynamical coefficient) -- 7.6.2. With a variable static coefficient -- 7.6.3. With variable static and dynamical coefficients -- 7.7. With the viscous dissipation term -- 7.8. Ill-posed problems -- 7.8.1. First model: limit of a well-posed friction law -- 7.8.2. Second model: a differential inclusion without uniqueness -- 7.8.3. Conclusion -- Appendix 1. Mathematical Reminders -- A1.1. Two Gronwall's lemmas -- A1.2. Norms, scalar products, normed vector space, Banach and Hilbert space -- A1.2.1. Scalar products, norms -- A1.2.2. Banach and Hilbert space, separable space -- A1.3. Symmetric positive definite matrices -- A1.4. Differentiable function -- A1.5. Weak limit -- A1.6. Continuous function spaces -- A1.7. Lp space of integrable functions -- A1.7.1. Lp(Ω) space -- A1.7.2. Lp(Ω, Rq ) space -- A1.7.3. Lp(Ω -- H) spaces -- A1.8. Distributions -- A1.8.1. Real values distributions -- A1.8.2. Distributions with values in Rq -- A1.8.3. Distributions with values in Hilbert space -- A1.9. Sobolev space definition -- A1.9.1. Functions with real values -- A1.9.2. Functions with values in Hilbert space -- Appendix 2. Convex Functions -- A2.1. Functions defined on.
A2.2. Functions defined on Hilbert space -- A2.2.1. Any Hilbert space -- A2.2.2. Particular case of the finite dimension -- Appendix 3. Proof of Theorem 2.20 -- Appendix 4. Proof of Theorem 3.18 -- Appendix 5. Research of Convex Potential -- A5.1. Method used -- A5.2. Lemma 5.1 -- A5.3. Lemma 5.4 -- A5.4. Lemma 7.1 -- Bibliography -- Index.
Özet:
This book contains theoretical and application-oriented methods to treat models of dynamical systems involving non-smooth nonlinearities. The theoretical approach that has been retained and underlined in this work is associated with differential inclusions of mainly finite dimensional dynamical systems and the introduction of maximal monotone operators (graphs) in order to describe models of impact or friction. The authors of this book master the mathematical, numerical and modeling tools in a particular way so that they can propose all aspects of the approach, in both a deterministic and stochastic context, in order to describe real stresses exerted on physical systems. Such tools are very powerful for providing reference numerical approximations of the models. Such an approach is still not very popular nevertheless, even though it could be very useful for many models of numerous fields (e.g. mechanics, vibrations, etc.). This book is especially suited for people both in research and industry interested in the modeling and numerical simulation of discrete mechanical systems with friction or impact phenomena occurring in the presence of classical (linear elastic) or non-classical constitutive laws (delay, memory effects, etc.). It aims to close the gap between highly specialized mathematical literature and engineering applications, as well as to also give tools in the framework of non-smooth stochastic differential systems: thus, applications involving stochastic excitations (earthquakes, road surfaces, wind models etc.) are considered. Contents 1. Some Simple Examples. 2. Theoretical Deterministic Context. 3. Stochastic Theoretical Context. 4. Riemannian Theoretical Context. 5. Systems with Friction. 6. Impact Systems. 7. Applications-Extensions. About the Authors Jérôme Bastien is Assistant Professor at the University Lyon 1 (Centre de
recherche et d'Innovation sur le sport) in France. Frédéric Bernardin is a Research Engineer at Département Laboratoire de Clermont-Ferrand (DLCF), Centre d'Etudes Techniques de l'Equipement (CETE), Lyon, France. Claude-Henri Lamarque is Head of Laboratoire Géomatériaux et Génie Civil (LGCB) and Professor at Ecole des Travaux Publics de l'Etat (ENTPE), Vaulx-en-Velin, France.
Notlar:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Tür:
Elektronik Erişim:
Click to View