
Invitation to Noncommutative Geometry.
Başlık:
Invitation to Noncommutative Geometry.
Yazar:
Khalkhali, Masoud.
ISBN:
9789812814333
Yazar Ek Girişi:
Fiziksel Tanımlama:
1 online resource (515 pages)
İçerik:
Contents -- Preface -- A Walk in the Noncommutative Garden A. Connes and M. Marcolli -- Contents -- 1. Introduction -- 2. Handling Noncommutative Spaces in the Wild: Basic Tools -- 3. Phase Spaces of Microscopic Systems -- 4. Noncommutative Quotients -- 5. Spaces of Leaves of Foliations -- 6. The Noncommutative Tori -- 7. Duals of Discrete Groups -- 8. Brillouin Zone and the Quantum Hall Effect -- 9. Tilings -- 10. Noncommutative Spaces from Dynamical Systems -- 11. Noncommutative Spaces from String Theory -- 12. Groupoids and the Index Theorem -- 13. Riemannian Manifolds, Conical Singularities -- 14. Cantor Sets and Fractals -- 15. Spaces of Dimension z and DimReg -- 16. Local Algebras in Supersymmetric QFT -- 17. Spacetime and the Standard Model of Elementary Particles -- 18. Isospectral Deformations -- 19. Algebraic Deformations -- 20. Quantum Groups -- 21. Spherical Manifolds -- 22. Q-lattices -- 23. Modular Hecke Algebras -- 24. Noncommutative Moduli Spaces, Shimura Varieties -- 25. The Ad`ele Class Space and the Spectral Realization -- 26. Thermodynamics of Endomotives and the Tehran Program -- References -- Renormalization of Noncommutative Quantum Field Theory H. Grosse and R. Wulkenhaar -- Contents -- 1. Introduction -- 1.1. Noncommutative geometry -- 2. Some Models for Noncommutative Space(-Time) -- 2.1. The Moyal plane -- 2.2. The noncommutative torus -- 2.3. Fuzzy spaces -- 3. Classical Field Theory on Noncommutative Spaces -- 3.1. Field theory on the noncommutative torus -- 3.2. Classical action functionals on the Moyal plane -- 4. Regularization -- 5. Renormalization -- 5.1. Quantum field theory on the noncommutative torus -- 5.2. Quantum field theories on the Moyal plane -- 5.3. The power-counting analysis of Chepelev and Roiban -- 5.4. -expanded field theories -- 5.5. Noncommutative space-time.
6. Renormalization of Noncommutative 4-theory to All Orders -- 6.1. The 4-action in the matrix base -- 6.2. Renormalization group approach to dynamical matrix models -- 6.3. Power-counting behavior of the noncommutative 4-model -- Acknowledgements -- References -- Lectures on Noncommutative Geometry M. Khalkhali -- Contents -- 1. Introduction -- 2. From C -algebras to noncommutative spaces -- 2.1. Gelfand-Naimark theorems -- 2.2. GNS, KMS, and the ow of time -- 2.3. From groups to noncommutative spaces -- 2.4. Continuous fields of C -algebras -- 2.5. Noncommutative tori -- 3. Beyond C -algebras -- 3.1. Algebras stable under holomorphic functional calculus -- 3.2. Almost commutative and Poisson algebras -- 3.3. Deformation theory -- 4. Sources of noncommutative spaces -- 4.1. Noncommutative quotients -- 4.2. Hopf algebras and quantum groups -- 5. Topological K-theory -- 5.1. The K functor -- 5.2. The higher K-functors -- 5.3. Bott periodicity theorem -- 5.4. Further results -- 5.5. Twisted K-theory -- 5.6. K-homology -- 6. Cyclic Cohomology -- 6.1. Cyclic cocycles -- 6.2. Connes' spectral sequence -- 6.3. Topological algebras -- 6.4. The deformation complex -- 6.5. Cyclic homology -- 6.6. Connes-Chern character -- 6.7. Cyclic modules -- 6.8. Hopf cyclic cohomology -- References -- Noncommutative Bundles and Instantons in Tehran G. Landi and W. D. van Suijlekom -- Contents -- 1. Introduction -- 2. Elements of Gauge Theories -- 2.1. Connections on principal and vector bundles -- 2.2. Connections on noncommutative vector bundles -- 2.3. Gauge transformations -- 2.4. Noncommutative principal bundles -- 3. Toric Noncommutative Manifolds -- 3.1. Deforming along a torus -- 3.2. Examples: planes and spheres -- 3.3. Vector bundles on M -- 3.4 Differential calculus on M -- 3.5. Local index formula on toric noncommutative manifolds.
4. The Hopf Fibration on S4 -- 4.1. Let us roll noncommutative spheres -- 4.2. The SU(2) principal fibration on S -- 4.3. The SU(2) principal fibration on S4 -- 4.4. The noncommutative instanton bundle -- 4.5. Associated modules and their properties -- 4.6. The adjoint bundle -- 4.7. Index of twisted Dirac operators -- 4.8. The noncommutative principal bundle structure -- 5. Yang-Mills Theory on Toric Manifolds -- 5.1. Yang-Mills theory on S4 -- 5.2. On a generic four-dimensional M -- 6. Let Us Twist Symmetries -- 6.1. Twisting Hopf algebras and their actions -- 6.2. The rotational symmetry of S -- 7. Instantons from Twisted Conformal Symmetries -- 7.1. The basic instanton -- 7.2. The in nitesimal conformal symmetry -- 7.3. The construction of instantons -- 7.4. Instantons on R4 -- 7.5. Moduli space of instantons -- 7.6. Dirac operator associated to the complex -- 8. Final Remarks -- Acknowledgments -- References -- Lecture Notes on Noncommutative Algebraic Geometry and Noncommutative Tori S. Mahanta -- Contents -- 0. Introduction -- 1. Some Preliminaries -- 1.1. Twisted homogeneous coordinate rings -- 1.2. A cursory glance at Grothendieck categories -- 1.3. Justification for bringing in Grothendieck categories -- 1.4. A brief discussion on construction of quotient categories -- 2. Noncommutative Projective Geometry -- 2.1. ProjR -- 2.2. Characterization of ProjR -- 2.3. Cohomology of ProjR -- 2.4. Dimension of ProjR -- 2.5. Some examples (mostly borrowed from [AZ94]) -- 3. Algebraic Aspects of noncommutative Tori -- 3.1. t-structures on Db(X) depending on -- 3.2. ASIDE on Serre duality -- Acknowledgments -- References -- Lectures on Derived and Triangulated Categories B. Noohi -- Contents -- Lecture 1: Abelian Categories -- 1. Products and Coproducts in Categories -- 2. Abelian Categories -- 3. Categories of Sheaves.
4. Abelian Category of Quasi-Coherent Sheaves on a Scheme -- 5. Morita Equivalence of Rings -- 6. Appendix: Injective and Projective Objects in Abelian Categories -- Lecture 2: Chain Complexes -- 1. Why Chain Complexes? -- 2. Chain Complexes -- 3. Constructions on Chain Complexes -- 4. Basic Properties of Cofiber Sequences -- 5. Derived Categories -- 6. Variations on the Theme of Derived Categories -- 7. Derived Functors -- Lecture 3: Triangulated Categories -- 1. Triangulated Categories -- 2. Cohomological Functors -- 3. Abelian Categories Inside Triangulated Categories -- t-Structures -- 4. Producing New Abelian Categories -- 5. Appendix I: Topological Triangulated Categories -- 6. Appendix II: Di erent Illustrations of TR4 -- Acknowledgment -- References -- Examples of Noncommutative Manifolds: Complex Tori and Spherical Manifolds J. Plazas -- Contents -- 0. Introduction -- 1. Noncommutative Tori -- 1.1. Noncommutative tori as topological spaces -- 1.2. Smooth functions on noncommutative tori -- 1.3. Morita equivalences and real multiplication -- 1.4. Complex structures on tori and holomorphic connections -- 1.5. Homogeneous coordinate rings -- 1.6. Arithmetic structures -- 2. Spherical Manifolds -- 2.1. Chern characters -- 2.2. The two sphere S2 -- 2.3. The noncommutative spheres S4 -- 2.4. Noncommutative 3-spheres -- 3. Epilogue -- References -- D-Branes in Noncommutative Field Theory R. J. Szabo -- Contents -- 1. Introduction and Background from String Theory -- 2. Euclidean D-branes -- 2.1. Moyal spaces -- 2.2. Fock modules -- 2.3. Deformation quantization -- 2.4. Derivations -- 3. Solitons on -- 3.1. Projector solitons -- 3.2. Soliton moduli spaces -- 3.3. Partial isometry solitons -- 3.4. Topological charges -- 3.5. Worldvolume construction -- 4. Gauge Theory on -- 4.1. Projective modules -- 4.2. Yang-Mills theory -- 4.3. Fluxons.
5. Toroidal D-branes -- 5.1. Solitons on the noncommutative torus -- 5.2. Gauge theory -- 5.3. Instantons -- 5.4. Instanton moduli spaces -- 5.5. Decompacti cation -- 6. D-branes in Group Manifolds -- 6.1. Symmetric D-branes -- 6.2. Untwisted D-branes -- 6.3. Example: D-branes in SU(2) -- 6.4. Twisted D-branes -- Acknowledgments -- References.
Özet:
This is the first existing volume that collects lectures on this important and fast developing subject in mathematics. The lectures are given by leading experts in the field and the range of topics is kept as broad as possible by including both the algebraic and the differential aspects of noncommutative geometry as well as recent applications to theoretical physics and number theory. Sample Chapter(s). A Walk in the Noncommutative Garden (1,639 KB). Contents: A Walk in the Noncommutative Garden (A Connes & M Marcolli); Renormalization of Noncommutative Quantum Field Theory (H Grosse & R Wulkenhaar); Lectures on Noncommutative Geometry (M Khalkhali); Noncommutative Bundles and Instantons in Tehran (G Landi & W D van Suijlekom); Lecture Notes on Noncommutative Algebraic Geometry and Noncommutative Tori (S Mahanta); Lectures on Derived and Triangulated Categories (B Noohi); Examples of Noncommutative Manifolds: Complex Tori and Spherical Manifolds (J Plazas); D-Branes in Noncommutative Field Theory (R J Szabo). Readership: Researchers in mathematical and theoretical physics, geometry and topology, algebra and number theory.
Notlar:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Konu Başlığı:
Tür:
Yazar Ek Girişi:
Elektronik Erişim:
Click to View