
Progress in Adhesion and Adhesives.
Başlık:
Progress in Adhesion and Adhesives.
Yazar:
Mittal, K. L.
ISBN:
9781119162339
Yazar Ek Girişi:
Basım Bilgisi:
1st ed.
Fiziksel Tanımlama:
1 online resource (515 pages)
İçerik:
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- 1 Adhesion of Condensed Bodies at Microscale: Variation with Movable Boundary Conditions -- 1.1 Introduction -- 1.2 Kinematics: Energy Variation with Movable Boundary Conditions -- 1.3 Microbeam/plate Adhesion -- 1.4 Droplet Adhesion to a Solid -- 1.5 Elastica Model of CNT Adhesion -- 1.6 Cell Adhesion -- 1.7 Summary and Prospects -- Acknowledgements -- References -- 2 Imparting Adhesion Property to Silicone Materials: Challenges and Solutions -- 2.1 Introduction -- 2.2 Cured PDMS -- 2.2.1 Curing Reactions -- 2.2.1.1 Free-Radical Curing -- 2.2.1.2 Condensation Curing -- 2.2.1.3 Hydrosilylation (Addition) Curing -- 2.2.2 Surface Properties -- 2.2.3 Adhesion Property -- 2.3 Methods for Cross-Linked PDMS Surface Modification -- 2.3.1 Physical Techniques -- 2.3.1.1 Plasma Treatment -- 2.3.1.2 Corona Treatment -- 2.3.1.3 UV/O3 Treatment -- 2.3.1.4 Laser Treatment -- 2.3.1.5 Physical Adsorption -- 2.3.2 Wet Chemical Techniques -- 2.3.2.1 LbL Deposition -- 2.3.2.2 Sol-Gel Method -- 2.3.2.3 Other Wet Chemical Treatments -- 2.3.3 Combination of Physical and Chemical Techniques -- 2.3.3.1 Covalent Surface Grafting -- 2.3.3.2 Modification by Amphiphilic Block Copolymers -- 2.3.3.3 Other Combination of Physical and Chemical Techniques -- 2.4 Summary and Prospects -- Acknowledgements -- References -- 3 Functionally Graded Adhesively Bonded Joints -- 3.1 Introduction -- 3.2 Functionally Graded Materials -- 3.3 Constitutive Relations -- 3.4 Joints with Functionally Graded Adherends -- 3.5 Functionally Graded Adhesives -- 3.6 Conclusions -- References -- 4 Synthetic Adhesives for Wood Panels: Chemistry and Technology -- 4.1 Introduction -- 4.2 Urea-formaldehyde (UF) Adhesives -- 4.3 Melamine-formaldehyde (MF) and Melamine-ureaformaldehyde (MUF) Adhesives -- 4.4 Phenolic Resins.
4.4.1 Reactivity and Hardening Reactions of PF Adhesive Resins -- 4.4.2 Modification of Phenolic Resins -- 4.4.2.1 Post-addition of Urea -- 4.4.2.2 Co-condensation Between Phenol and Urea -- 4.4.2.3 Addition of Tannins, Lignins and Isocyanates -- 4.5 Isocyanate Wood Adhesives -- 4.5.1 Chemistry of Isocyanate Wood Adhesives -- 4.5.2 Technology of Isocyanate as Adhesives -- 4.5.3 Emulsified/emulsifiable Water-dispersed PMDI -- 4.5.4 PF/pMDI and UF/pMDI Hybrid Adhesives -- 4.5.5 Conditions for Application of Isocyanate Adhesives for Wood -- 4.6 Summary -- References -- 5 Adhesion Theories in Wood Adhesive Bonding -- 5.1 Introduction -- 5.1.1 Wood Material Properties Relevant to Adhesion -- 5.1.2 Objectives -- 5.2 Mechanical Interlocking and Mechanics of Adhesive-Wood Interactions -- 5.2.1 Atomic Force Microscopy (AFM) & Nanoindentation -- 5.3 Electrostatic Adhesion -- 5.4 Wettability, Surface Energy, Thermodynamic Adhesion -- 5.4.1 Wood Anatomy Impact on Wetting -- 5.4.2 Extractives -- 5.4.3 Adhesive Wettability -- 5.4.4 Wood Modification -- 5.4.4.1 Acetylation -- 5.4.4.2 Grafting -- 5.4.4.3 Fire Retardants, Preservatives and Adhesion Promotion -- 5.4.5 Test Methods -- 5.5 Diffusion Theory of Adhesion -- 5.6 Covalent Bonding -- 5.7 Acid-base Theory -- 5.8 Weak Boundary Layer -- 5.8.1 Extractives -- 5.8.2 Heat Treatment -- 5.8.3 Wood Impregnation and Densification -- 5.8.4 Machining Processes -- 5.8.5 Surface Degradation -- 5.8.6 Surface Activation -- 5.9 Discussion and Future Research Prospects -- 5.10 Summary -- References -- 6 Adhesion and Surface Issues in Biocomposites and Bionanocomposites -- 6.1 Introduction -- 6.2 Biopolymers -- 6.2.1 Cellulose -- 6.2.2 Chitin -- 6.2.3 Starch -- 6.3 Chemical Modification of Cellulose, Chitin and Starch -- 6.4 Bio-based Matrices -- 6.4.1 Poly(lactic acid) (PLA) -- 6.4.2 Polyhydroxybutyrate (PHB) -- 6.4.3 Cellulose.
6.4.4 Chitosan -- 6.4.5 Starch -- 6.4.6 Natural Rubber -- 6.5 Processing Techniques -- 6.6 Interfacial Adhesion Issues -- 6.6.1 Challenges of Interfacial Adhesion of Natural Fibres in Polymer Matrix -- 6.6.1.1 Challenges of Dispersion of Cellulose Nanofibres -- 6.6.2 Strategies for Improving Interfacial Adhesion -- 6.6.3 New Challenges and Future Trends in Fibre/Matrix Interfacial Adhesion -- 6.7 Interface Characterization Techniques -- 6.7.1 Morphological Characterization -- 6.7.1.1 Scanning Electron Microscopy (SEM) -- 6.7.1.2 Atomic Force Microscopy (AFM) -- 6.7.2 Thermal Analysis -- 6.7.2.1 Thermogravimetric Analysis (TGA) -- 6.7.2.2 Differential Scanning Calorimetry (DSC) -- 6.7.2.3 Dynamic Mechanical Thermal Analysis (DMTA) -- 6.7.3 Spectroscopic Techniques -- 6.7.3.1 Fourier Transform Infrared (FTIR) and Raman Spectroscopies -- 6.7.3.2 Attenuated Total Reflectance Infrared Spectroscopy (ATR-IR) -- 6.7.3.3 Nuclear Magnetic Resonance (NMR) Spectroscopy -- 6.8 Summary and Conclusions -- References -- 7 Adhesion Phenomena in Pharmaceutical Products and Applications of AFM -- 7.1 Introduction -- 7.2 Adhesion in Pharmaceuticals -- 7.2.1 Adhesion Interactions -- 7.2.1.1 Drug-Drug/Carrier Interactions -- 7.2.1.2 Drug-Device/Packaging Interactions -- 7.2.2 Factors Influencing Adhesion -- 7.2.2.1 Monitoring and Controlling Influential Factors -- 7.3 Atomic Force Microscopy -- 7.3.1 AFM and Pharmaceutical Formulations -- 7.3.2 Advantages of AFM -- 7.4 Prospects -- 7.5 Summary -- Acknowledgments -- References -- 8 Cyanoacrylate Adhesives in Surgical Applications -- 8.1 Introduction -- 8.1.1 Basic Requirements of Surgical Adhesives -- 8.1.2 Surgical Substrates -- 8.1.3 Scope and Objectives of this Review -- 8.2 Types of Surgical Adhesives -- 8.2.1 Full Scope of Surgical Adhesives -- 8.2.2 The Surgeon's Toolbox -- 8.2.2.1 Fibrin Sealants.
8.2.2.2 Cyanoacrylates -- 8.2.2.3 Collagen-Based Adhesives -- 8.2.2.4 Poly(ethylene glycol) Polymers -- 8.2.2.5 Albumin and Glutaraldehyde Products -- 8.2.2.6 Others -- 8.2.3 Comparison of Adhesive Types -- 8.3 History of Cyanoacrylate Surgical Adhesives -- 8.3.1 Development of Cyanoacrylates as Industrial Adhesives -- 8.3.2 Development of Cyanoacrylate Tissue Adhesives -- 8.3.2.1 n-Butyl-2-Cyanoacrylate -- 8.3.2.2 2-Octyl-Cyanoacrylate -- 8.3.2.3 Newer Cyanoacrylate Surgical Adhesives -- 8.4 Formulation Development -- 8.4.1 Monomeric Derivatives -- 8.4.2 Optimal Formulation Development -- 8.4.2.1 Inhibitors -- 8.4.2.2 Stabilizers Added Depending on the Surgical Procedure -- 8.4.2.3 Accelerators -- 8.4.2.4 Thickeners -- 8.4.2.5 Plasticizers -- 8.5 Properties -- 8.5.1 Curing Mechanism -- 8.5.1.1 Comparative Shelf-Life -- 8.5.1.2 Container Materials for Packaging -- 8.5.2 Bond Strength -- 8.5.3 Toxicity -- 8.5.4 Biocompatibility -- 8.6 Clinical History -- 8.6.1 Closure of Skin Wounds and Superficial Incision Closure -- 8.6.2 Other Surgical Procedures and Future Uses -- 8.6.3 Graft Fixation -- 8.7 Future Potential -- 8.7.1 Development Path -- 8.7.1.1 Light Curing Cyanoacrylates -- 8.7.1.2 Solid Cyanoacrylate -- 8.7.2 Drivers for Increased Demand -- 8.8 Summary -- References -- 9 Ways to Generate Monosort Functionalized Polyolefin Surfaces -- 9.1 Introduction -- 9.1.1 General Principles -- 9.1.2 Formation of Functional Groups at Polyolefin Surfaces by Plasma Exposure -- 9.1.3 Polymer Degradation Caused by Plasma Exposure -- 9.1.4 Possible Strategies to Produce Monosort Functional Groups on Polyolefin Surfaces -- 9.2 Production of Monotype Functional Groups -- 9.2.1 OH Group Formation by Exposure to Oxygen Plasma -- 9.2.2 Formation of COOH Groups by Exposure to Carbon Dioxide Plasma.
9.2.3 Formation of Amino Groups by Exposure to Ammonia or Nitrogen Plasmas -- 9.2.3.1 Significance of Primary Amino Groups in Life Sciences -- 9.2.3.2 Ammonia Plasma Treatment of Polymers and Graphitic Materials -- 9.2.3.3 Undesired Oxygen Introduction on Exposure to Ammonia Plasma -- 9.2.3.4 Additional Side Reactions on Exposure to Ammonia Plasma -- 9.2.4 Surface Bromination -- 9.2.4.1 Kinetics, Thermodynamics and Mechanism -- 9.2.4.2 Parameter Dependence -- 9.2.4.3 Conversion of C-Br into Other Monotype Functional Groups -- 9.3 Other Methods for Introduction of Monotype Functional Groups onto the Polyolefin Surface (Plasma Polymerization, Underwater Plasma, ElectroSpray Ionization Deposition, Atmospheric-Pressure Chemical Ionization, Chemical Pretreatment) -- 9.3.1 Plasma Polymerization -- 9.3.2 Underwater Plasma -- 9.3.3 ElectroSpray Ionization (ESI) Deposition -- 9.3.4 Chemical Pretreatment -- 9.4 Hydrophobic Recovery -- 9.5 Grafting onto Functionalized Polyolefin Surfaces -- 9.5.1 Direct Grafting onto Radical Sites -- 9.5.2 Grafting onto Peroxy Radicals/Hydroperoxides -- 9.5.3 Grafting onto Monosort Functional Groups by Nucleophilic Substitution -- 9.5.3.1 Wet-Chemical Chain Extension at Amino Groups -- 9.5.3.2 Spacer Grafting onto OH-Groups at Polymer Surface -- 9.5.3.3 Spacer Anchoring onto C-Br Groups -- 9.5.3.4 Silane Attachment -- 9.6 Summary and Conclusions -- References -- 10 Nano-Enhanced Adhesives -- 10.1 Introduction -- 10.2 Why Nanostructured Reinforcements? -- 10.2.1 Carbon-based NPs -- 10.2.2 Metal-based NPs -- 10.2.3 POSS -- 10.2.4 Other Nanomaterials -- 10.2.4.1 Nanoclays -- 10.2.4.2 Nanosilicas (SiO2) -- 10.3 Development of Polymer-based Nanocomposites -- 10.3.1 Sonication -- 10.3.2 Three-roll Milling (Calendering) -- 10.3.3 High-Shear Mixing -- 10.4 Mechanical Properties of Nano-reinforced Adhesives.
10.4.1 Effect of Adhesive Stiffness.
Notlar:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Konu Başlığı:
Tür:
Elektronik Erişim:
Click to View