
Batteries : Materials Principles and Characterization Methods.
Başlık:
Batteries : Materials Principles and Characterization Methods.
Yazar:
Liao, Chen.
ISBN:
9780750326827
Yazar Ek Girişi:
Basım Bilgisi:
1st ed.
Fiziksel Tanımlama:
1 online resource (337 pages)
Seri:
IOP Series in Renewable and Sustainable Power Series
İçerik:
Intro -- Preface -- Outline placeholder -- 1 Introduction -- 2 Electrochemical characterization and modeling for batteries -- 3 Synchrotron-based battery imaging with multi-modal x-ray signals -- 4 FTIR -- 5 OEMS -- 6 Electron microscopy -- 7 NMR -- 8 X-ray photoelectron spectroscopy for batteries -- 9 Scanning electrochemical microscopy: a versatile tool for inspecting the reactivity of battery electrodes -- 10 Small-angle x-ray scattering for battery research -- Editor biography -- Chen Liao -- List of contributors -- Chapter 1 Fundamentals of rechargeable lithium ion and beyond lithium ion batteries -- -- List of symbols -- 1.1 Introduction to batteries -- 1.1.1 Lithium ion batteries -- 1.1.2 Beyond lithium ion batteries -- 1.2 Basic components of batteries -- 1.2.1 Cathodes -- 1.2.2 Anodes -- 1.2.3 Electrolytes -- 1.3 Conclusion -- Acknowledgements -- References -- Chapter 2 Electrochemical characterization and modeling for batteries -- 2.1 Introduction -- 2.1.1 Electrochemistry in batteries -- 2.1.2 Frequently used parameters -- 2.2 Electrochemical models for batteries -- 2.2.1 Classification of electrochemical models -- 2.2.2 Equivalent circuit models -- 2.2.3 Physics-based models -- 2.2.4 Models in battery characterization -- 2.3 DC electrochemical techniques -- 2.3.1 Open circuit voltage -- 2.3.2 Conductivity -- 2.3.3 Transport and transference number -- 2.3.4 Linear sweep and cyclic voltammetry -- 2.3.5 Constant current (galvanostatic) and potential (potentiostatic) method -- 2.3.6 Galvanostatic/potentiostatic intermittent titration technique -- 2.3.7 Hybrid pulse power characterization (HPPC) test -- 2.4 AC electrochemical impedance spectroscopy -- 2.4.1 Principle of electrochemical impedance spectroscopy -- 2.4.2 Equivalent circuit models for electrochemical systems -- 2.4.3 Reliability of impedance data.
2.4.4 Application to battery characterization -- Appendix A. List of symbols in table 2.1 -- References -- Chapter 3 Synchrotron-based battery imaging with multi-modal x-ray signals -- 3.1 Introduction -- 3.2 General synchrotron techniques: microscopy, spectroscopy, and scattering -- 3.2.1 Overview of synchrotron radiation and its interaction with matter -- 3.2.2 The interplay among lattice, electronic structure, and micromorphology in battery -- 3.3 Synchrotron multi-modal microscopy for battery research -- 3.3.1 An overview of the synchrotron-based imaging approaches -- 3.3.2 Battery research using synchrotron-based microscopy with absorption, phase, and scattering contrasts -- 3.3.3 Synchrotron-based diffractive imaging for battery research -- 3.3.4 X-ray spectro-microscopy for battery research -- 3.4 Data science approach for synchrotron-based battery research -- 3.5 Future directions of synchrotron-based battery research -- References -- Chapter 4 Vibrational spectroscopy for batteries -- 4.1 Fundamental principles and methods -- 4.1.1 Fourier-transform infrared spectroscopy (FTIR) -- 4.1.2 Raman spectroscopy -- 4.2 Vibrational spectroscopy for batteries -- 4.2.1 Ex situ FTIR and Raman -- 4.2.2 In situ FTIR and Raman -- 4.3 Future perspective -- References -- Chapter 5 Differential electrochemical mass spectrometry (DEMS) for batteries -- 5.1 Introduction -- 5.2 General principles of DEMS -- 5.2.1 Classification of DEMS -- 5.2.2 Mass spectrometry -- 5.2.3 DEMS setup -- 5.2.4 Instrument design -- 5.2.5 Quantification methods -- 5.2.6 System comparison -- 5.3 Research applications -- 5.3.1 Lithium-oxygen batteries -- 5.3.2 Lithium-ion battery -- 5.4 Summary and conclusion -- Abbreviations -- Acknowledgements -- References -- Chapter 6 Electron microscopies for batteries -- 6.1 Electron microscopy SEM and TEM -- 6.1.1 Basics of electron microscopy.
6.1.2 Electron beam effect -- 6.1.3 Applications of electron microscopy -- References -- Chapter 7 Nuclear magnetic resonance as an analytical tool in battery materials science -- 7.1 Introduction -- 7.2 Methods -- 7.2.1 Introduction to NMR methodology -- 7.2.2 Structural investigations and MAS -- 7.2.3 NMR relaxometry -- 7.2.4 NMR diffusometry -- 7.2.5 Other NMR methods useful in material characterization -- 7.3 NMR of battery materials: examples -- 7.3.1 Electrode materials -- 7.3.2 Electrolytes -- 7.3.3 Electrode and electrolyte interface -- 7.3.4 Operando NMR techniques -- Acknowledgements -- References -- Chapter 8 X-ray photoelectron spectroscopy for batteries -- 8.1 Principles and operation -- 8.1.1 Photoelectric effect and x-rays -- 8.1.2 Inelastic mean free path and information depth -- 8.1.3 X-ray photoelectron spectra -- 8.1.4 Instrumentation -- 8.1.5 Complementary surface analysis techniques -- 8.2 XPS analysis of battery materials -- 8.2.1 Electrode charge/discharge -- 8.2.2 Interphase chemistry and speciation -- 8.2.3 Concentration gradients and depth profiling -- 8.2.4 Synchrotron methods -- 8.3 Practical considerations and technique limitations -- 8.3.1 Sample considerations -- 8.3.2 Binding energy referencing and differential charging -- 8.3.3 Peak fitting -- Abbreviations -- References -- Chapter 9 Scanning electrochemical microscopy: a versatile tool for inspecting the reactivity of battery electrodes -- 9.1 Introduction -- 9.2 Principles of scanning electrochemical microscopy -- 9.2.1 Ultramicroelectrodes and their operation -- 9.2.2 Approach curves -- 9.2.3 SECM modes -- 9.2.4 Analytical expressions -- 9.3 Battery applications -- 9.3.1 Li-ion batteries -- 9.3.2 Redox flow batteries -- 9.3.3 Li-air batteries -- 9.4 Related electrochemical scanning probe techniques and multi-modal characterization with SECM.
9.4.1 Other electrochemical scanning probe techniques -- 9.4.2 Multimodal SECM techniques -- 9.5 Outlook -- 9.5.1 SECM technique development -- 9.5.2 Computational advancements -- 9.5.3 Novel experiments -- Acknowledgments -- References -- Chapter 10 Small-angle x-ray scattering for battery research -- 10.1 Introduction -- 10.2 The theory of small-angle x-ray scattering -- 10.3 Potential applications and advantages of SAXS -- 10.3.1 Testing materials -- 10.3.2 Advantages of SAXS comparing with other characterization techniques -- 10.4 Data processing of SAXS -- 10.5 Examples of SAXS applications in battery -- 10.5.1 Porous carbon anode materials -- 10.5.2 Sulfur cathode materials -- 10.5.3 Separator -- 10.5.4 Electrolytes -- 10.5.5 In situ or operando SAXS -- 10.6 Conclusion -- References.
Özet:
Introducing battery fundamentals, this book explores state-of-the-art characterisation methods currently employed by the energy storage community. With a focus on Li-ion batteries, the text is ideal for researchers and students interested in the materials and characterization methods for batteries, including those without a background in electro- or solid-state chemistry.
Notlar:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Tür:
Elektronik Erişim:
Click to View