Skip to:Content
Vehicle type classification with deep learning için kapak resmi
Vehicle type classification with deep learning
Yaraş, Neriman, author.
Yazar Ek Girişi:
Fiziksel Tanımlama:
viii, 68 leaves: color illustrarions, charts;+ 1 computer laser optical disc.
In this thesis, we studied the vehicle type classification problem from several perspectives. We apply a deep learning technique with different parameters such as image size and the number of images in data sets to the classification of an image as one of the nine vehicle types. After choosing the most appropriate one among trained models, we convert the problem into a hierarchical tree classification problem so that it could be analyzed in three different tree hierarchies. Experiments are performed using three computational methods for calculating possibilities for each of the nine classes that correspond to the leaves of the hierarchical trees. These studies result in a conclusion that 0.762812 average accuracy is obtained when traditional arithmetic mean computation applied on the hierarchical tree with level-2 using the Stanford Dataset by 224 image size on ResNet34 architecture.
Yazar Ek Girişi:
Tek Biçim Eser Adı:
Thesis (Master)--İzmir Institute of Technology: Computer Engineering.

İzmir Institute of Technology: Computer Engineering--Thesis (Master).
Elektronik Erişim:
Access to Electronic Versiyon.


Materyal Türü
Demirbaş Numarası
Yer Numarası
Durumu/İade Tarihi
Tez T002205 QA76.87 .Y26 2020

On Order

Go to:Top of Page