Skip to:ContentBottom
Synthesis and characterization of boron composite nanoparticles for wear and friction reduction için kapak resmi
Synthesis and characterization of boron composite nanoparticles for wear and friction reduction
Başlık:
Synthesis and characterization of boron composite nanoparticles for wear and friction reduction
Yazar:
Gökmen, Esin, uthor.
Yazar Ek Girişi:
Fiziksel Tanımlama:
xii, 72 leaves: color illustraltions, charts;+ 1 computer laser optical disc.
Özet:
Since most of the conventional lubricants reach their performance limits, new antiwear and extreme pressure (EP) additives are designed so that lubricants can minimize friction and wear when used in high temperature and pressure conditions. There is growing interest in the use of nanoparticles as an additive in lubricants. Due to its outstanding chemical properties, boron is frequently involved in the design of nanoparticles. Especially borate derivatives and hexagonal boron nitride (h-BN) have already taken their places in many lubricant formulations. The aim of this study was the production of silica-boron composite nanoparticles that can replace the phosphate-derived additives used in lubricant formulations and to provide the extreme pressure, antiwear and friction-regulating properties at the same time. For this purpose, the Stöber method that is used for silica production was modified to produce Si/Na-Borate nanoparticles. It was found that the synthesis of composite nanoparticles in desired size distribution and morphology as well as composite structures composed of Si and Na-Borate, was possible changing the amounts of ingredients and modes of addition. It was observed that the morphology and the chemical structure of these particles depend on the amount of Na-Borate (1, 3, and 5% w/w) and the addition type of Na-Borate (Direct, 500 ..L/min, 5..L/min). Then composite nanoparticles were characterized using SEM, FTIR and ICP-MS and some tests were conducted to examine the structure of particles. The tribological performance of these particles tested using Four Ball Test method have shown that there is a significant improvement in the presence of these particles.
Yazar Ek Girişi:
Tek Biçim Eser Adı:
Thesis (Master)--İzmir Institute of Technology: Chemical Engineering.

İzmir Institute of Technology: Chemical Engineering--Thesis (Master).
Elektronik Erişim:
Access to Electronic Versiyon.
Ayırtma: Copies: