Radioisotope Gauges for Industrial Process Measurements. için kapak resmi
Radioisotope Gauges for Industrial Process Measurements.
Başlık:
Radioisotope Gauges for Industrial Process Measurements.
Yazar:
Johansen, Geir Anton.
ISBN:
9780470021088
Yazar Ek Girişi:
Basım Bilgisi:
1st ed.
Fiziksel Tanımlama:
1 online resource (335 pages)
İçerik:
Radioisotope Gauges for Industrial Process Measurements -- Contents -- Preface -- Symbols, Units and Abbreviations -- 1 Introduction -- 1.1 Ionising Radiation -- 1.2 Industrial Nucleonic Measurement Systems -- 1.3 Historical Perspective -- 1.4 The Objective of This Book -- 2 Radiation Sources -- 2.1 A Primer on Atomic and Nuclear Physics -- 2.1.1 Radioactive Decay -- 2.1.2 Modes of Decay -- 2.1.3 γ-Rays -- 2.1.4 Competitive Modes of Disintegration -- 2.1.5 Characteristic X-rays -- 2.1.6 Bremsstrahlung -- 2.1.7 Activity and Half-life -- 2.1.8 Radiation Energy -- 2.1.9 Summary of Radioisotope Emissions -- 2.2 Radioisotope Sources -- 2.2.1 Important Source Properties -- 2.2.2 Natural Sources -- 2.2.3 Tracers -- 2.2.4 Sealed Sources -- 2.3 Other Radiation Sources -- 2.3.1 X-ray Tubes -- 2.3.2 Nuclear Reactors -- 2.3.3 Accelerators -- 2.4 Sealed Radioisotope Sources Versus X-ray Tubes -- 3 Interaction of Ionising Radiation with Matter -- 3.1 Charged Particle Interactions -- 3.1.1 Linear Stopping Power -- 3.1.2 Range -- 3.1.3 Charged Particle Beam Intensity -- 3.2 Attenuation of Ionising Photons -- 3.2.1 The Intensity and the Inverse-Square Law -- 3.3 The Attenuation Coefficient of Ionising Photons -- 3.3.1 The Photoelectric Effect -- 3.3.2 Compton Scattering -- 3.3.3 Rayleigh Scattering -- 3.3.4 Pair Production -- 3.3.5 Attenuation Versus Absorption -- 3.3.6 Mean Free Path and Half-thickness -- 3.4 Attenuation Coefficients of Compounds and Mixtures -- 3.4.1 The Attenuation Coefficient of Homogeneous Mixtures -- 3.4.2 The Linear Attenuation Coefficients of Chemical Compounds -- 3.4.3 Attenuation in Inhomogeneous Materials -- 3.5 Broad Beam Attenuation -- 3.5.1 The Build-Up Factor -- 3.5.2 Build-Up Discrimination -- 3.5.3 The 'Effective' Attenuation Coefficient -- 3.6 Neutron Interactions -- 3.7 Effective Atomic Number -- 3.8 Secondary Electrons.

4 Radiation Detectors -- 4.1 Principle of Operation -- 4.2 Detector Response and Spectrum Interpretation -- 4.2.1 Window Transmission and Stopping Efficiency -- 4.2.2 The Noiseless Detection Spectrum -- 4.2.3 Detector Models -- 4.2.4 The Real Detection Spectrum -- 4.2.5 Signal Generation in Ionisation Sensing Detectors -- 4.2.6 Signal Generation in Scintillation Sensing Detectors -- 4.3 Purposes and Properties of Detector Systems -- 4.3.1 Energy, Temporal and Spatial Resolution -- 4.3.2 Important Properties -- 4.4 Gaseous Detectors -- 4.4.1 Detector Types -- 4.4.2 Wall Interactions -- 4.4.3 The Ionisation Chamber -- 4.4.4 The Proportional Counter -- 4.4.5 The Geiger-Muller Tube -- 4.5 Semiconductor Detectors -- 4.5.1 Electrical Classification of Solids -- 4.5.2 Impurities and Doping of Semiconductors -- 4.5.3 The pn Junction -- 4.5.4 The PIN Silicon Detector -- 4.5.5 Compound Semiconductor Detectors -- 4.5.6 Characteristics of Semiconductor Detectors -- 4.6 Scintillation Detectors -- 4.6.1 Plastic Scintillators -- 4.6.2 Common Scintillation Crystals and Their Properties -- 4.6.3 The Photomultiplier Tube -- 4.6.4 Electron Multiplier Types -- 4.6.5 Photodiodes for Scintillation Light Read-Out -- 4.6.6 Scintillation Detector Assembling -- 4.6.7 Temperature Effects -- 4.6.8 Ageing -- 4.7 Position Sensitive Detectors -- 4.8 Thermoelectric Coolers -- 4.9 Stopping Efficiency and Radiation Windows -- 4.9.1 Stopping Efficiency -- 4.9.2 Radiation Windows -- 4.10 Neutron Detectors -- 5 Radiation Measurement -- 5.1 Read-Out Electronics -- 5.1.1 Preamplifiers -- 5.1.2 Bias Supply -- 5.1.3 The Shaping Amplifier -- 5.1.4 Electronic Noise -- 5.1.5 Electronics Design -- 5.2 Data Processing Electronics and Methods -- 5.2.1 Intensity Measurement -- 5.2.2 Energy Measurement -- 5.2.3 Time Measurement -- 5.2.4 Position Measurement -- 5.3 Measurement Accuracy.

5.3.1 The Measuring Result -- 5.3.2 Estimation of Measurement Uncertainty -- 5.3.3 Error Propagation and Uncertainty Budget -- 5.3.4 Pulse Counting Statistics and Counting Errors -- 5.3.5 Probability of False Alarm -- 5.3.6 Energy Resolution -- 5.3.7 Measurement Reliability -- 5.4 Optimising Measurement Conditions -- 5.4.1 Background Radiation Sources -- 5.4.2 Shielding -- 5.4.3 Collimation -- 5.4.4 Neutron Collimation and Shielding -- 5.4.5 Alternative Transmission Measurement Geometries -- 5.4.6 Counting Threshold Positioning -- 5.4.7 Spectrum Stabilisation -- 5.4.8 Background Correction -- 5.4.9 Compton Anticoincidence Suppression -- 5.4.10 Source Decay Compensation -- 5.4.11 Dead Time Correction -- 5.4.12 Data Treatment of Rapidly Changing Signals -- 5.4.13 Dynamic Time Constants -- 5.4.14 Errors in Scaler Measurements -- 5.5 Measurement Modalities -- 5.5.1 Transmission -- 5.5.2 Scattering -- 5.5.3 Characteristic Emissions -- 5.5.4 Tracer Emission -- 5.5.5 NORM Emissions -- 5.5.6 Multiple Beam, Energy and Modality Systems -- 6 Safety, Standards and Calibration -- 6.1 Classification of Industrial Radioisotope Gauges -- 6.2 Radiological Protection -- 6.2.1 Radiological Protection Agencies -- 6.2.2 Quantities Used in Radiological Protection -- 6.2.3 Biological Effects of Ionising Radiation -- 6.2.4 Risk -- 6.2.5 Typical and Recommended Dose Levels -- 6.2.6 Dose Rate Estimation for γ-Ray Point Sources -- 6.2.7 Dose Rate Estimation for Neutrons -- 6.2.8 Examples on National Legislation -- 6.3 Radiation Monitors and Survey Meters -- 6.3.1 Contamination Monitors -- 6.3.2 Dose Rate Meters -- 6.3.3 Neutron Dose Rate Meters -- 6.3.4 Personal Dosimetry -- 6.3.5 Calibration of Dose Rate Monitors -- 6.4 Radiological Protection Methods -- 6.5 Transport of Radioactive Materials -- 6.5.1 Source Containers -- 6.5.2 Testing of Type A Containers.

6.5.3 Special Form -- 6.5.4 Transport Index -- 6.5.5 Labelling -- 6.5.6 Sealed Source Handling Procedures -- 6.6 Leakage Testing of Sealed Sources -- 6.7 Statutory Requirements -- 6.7.1 Licensing -- 6.7.2 Labelling of Installations Shielded Containers -- 6.7.3 Procedures or Local Rules -- 6.7.4 Accountancy and Training -- 6.7.5 Restricted Radiation Areas -- 6.8 Calibration and Traceability -- 6.8.1 Calibration -- 6.8.2 Traceability -- 6.8.3 Accreditation -- 6.8.4 Calibration of Radioisotope Gauges -- 7 Applications -- 7.1 Density Measurement -- 7.1.1 The γ-Ray Densitometer -- 7.1.2 Belt Weigher -- 7.1.3 Smoke Detector -- 7.2 Component Fraction Measurements -- 7.2.1 Two-Component Fraction Measurement -- 7.2.2 Multiple Beam Two-Component Metering -- 7.2.3 Three-Component Fraction Measurement -- 7.2.4 Dual Modality γ-Ray Densitometry -- 7.2.5 Component Fraction Measurements by Neutrons -- 7.2.6 Local Void Fraction Measurements -- 7.2.7 Dual-Energy Ash in Coal Transmission Measurement -- 7.2.8 Pair Production Ash in Coal Measurement -- 7.2.9 Coke Moisture Measurements -- 7.3 Level and Interface -- 7.3.1 Level Measurement and Control -- 7.3.2 Linearity in Level Gauges -- 7.3.3 Pressure Consideration in Level Systems -- 7.3.4 Interface Measurement -- 7.3.5 Installed Density Profile Gauges -- 7.4 Thickness Measurements -- 7.4.1 γ-Ray Transmission Thickness Gauges -- 7.4.2 Thickness Measurement Using γ-Ray Scatter -- 7.4.3 β-Particle Thickness Gauges -- 7.4.4 Monitoring of Wall Thickness and Defects -- 7.5 Flow Measurement Techniques -- 7.5.1 Density Cross-Correlation -- 7.5.2 Mass Flow Measurement -- 7.5.3 Multi-phase Flow Metering -- 7.5.4 Tracer Dilution Method -- 7.6 Elemental Analysis -- 7.7 Imaging -- 7.7.1 Transmission Radiography -- 7.7.2 Industrial Tomography -- 7.7.3 General Design of an Industrial Tomograph.

7.7.4 Industrial High-Speed Transmission Tomography -- 8 Engineering -- 8.1 Electronic Data -- 8.2 Rationale for Using Radioisotope Sources -- 8.2.1 Justification -- 8.2.2 ALARA -- 8.2.3 Constraint -- 8.3 Density Gauge Design -- 8.3.1 Background Information -- 8.3.2 Choice of Isotope -- 8.3.3 Source Activity Consideration -- 8.3.4 Accuracy -- 8.3.5 The Shielded Source Holder -- 8.3.6 The Detector -- 8.3.7 Radiological Considerations -- 8.3.8 Installation and Handover to the Operator -- 8.4 Dual Energy Density Gauge -- 8.4.1 The Dual Energy Shielded Source Holder -- 8.4.2 Dual Energy Detector -- 8.4.3 Dual Energy Design Considerations -- 8.4.4 Calibration -- 8.5 Monte Carlo Simulation -- Appendix A Data -- A.1 Constants -- A.2 Nuclide Index -- A.3 X-ray Fluorescence Data -- A.4 PGNNA Data -- Appendix B Formulae Derivation and Examples -- B.1 Photon Attenuation -- B.2 Compton Scattering -- B.2.1 Energy Sustained by the Scattered Photon -- B.2.2 The Differential Klein-Nishina Formula -- B.2.3 Compton Scattering and Absorption Cross Sections -- B.3 Photomultiplier Tube Lifetime Estimation -- B.4 Statistical Errors in Measurement -- B.4.1 The Linear Attenuation Coefficient -- B.4.2 The Density -- B.5 Read-out Electronics -- B.5.1 Experimental Noise Characterisation -- B.5.2 Electronics for Photodiode Read-out of BGO Crystal -- B.5.3 High Count-Rate Electronics for a CdZnTe Detector -- B.6 Half-width Calculation -- Appendix C References -- Index.
Özet:
In order to fully utilise nucleonic measurement principles and their applications, it is important to have an understanding of the underlying physics. Radioisotope Gauges for Industrial Process Measurements combines theoretical background with practical experience in order to present an accessible overview of the use of radioisotopes in industry. This unique book explains the modes of operation of installed gauges and presents nucleonic methods relevant to measurement problems. The first part of the book deals with radiation sources, the interaction of radiation with matter and radiation detectors. The second part explains the different measurement principles used for industrial gauges and the last part of the book covers industrial applications. This book also: Features a concise introduction to atomic and nuclear physics. Presents a range of nucleonic measurement methods and highlights their application to a variety of problems. Contains an overview of electronics, measurement accuracy, safety and standards. Considers processes and demands, design strategies and practical realisation of measurement systems. Provides many practical engineering examples. Offering a comprehensive coverage of engineering applications, this book is an essential tool for electrical, electronic and instrument engineers in the oil and chemicals processing sectors. It is also a valuable reference to graduate students and physicists involved in nuclear radiation measurement, medical applications, radiochemical research, environmental monitoring and chemical engineering.
Notlar:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Yazar Ek Girişi:
Elektronik Erişim:
Click to View
Ayırtma: Copies: