Green Chemistry for Environmental Remediation. için kapak resmi
Green Chemistry for Environmental Remediation.
Başlık:
Green Chemistry for Environmental Remediation.
Yazar:
Sanghi, Rashmi.
ISBN:
9781118287682
Yazar Ek Girişi:
Basım Bilgisi:
1st ed.
Fiziksel Tanımlama:
1 online resource (802 pages)
İçerik:
Green Chemistry for Environmental Remediation -- Contents -- Foreword -- PART 1 Green Chemistry and Societal Sustainability -- 1. Environment and the Role of Green Chemistry -- 1.1 The Environmental Concern -- 1.2 The Role of Chemistry -- 1.3 Sustainable Development -- 1.4 Era of Green Chemistry -- 1.4.1 Twelve Principles of Green Chemistry [1] -- 1.4.2 Objectives of Green Chemistry -- 1.4.3 Views of Green Chemistry Experts -- 1.4.4 Concepts Related to Green Chemistry: Cause of Confusion -- 1.4.5 International Initiatives for Green Chemistry Awareness -- 1.5 Concluding Remarks -- Acknowledgement -- References -- Suggested Reading: Some Books on Green Chemistry -- Useful Resources for Green Chemistry and their Links -- 2. The Greening of the Chemical Industry: Past, Present and Challenges Ahead -- 2.1 Introduction -- 2.2 From Greening Technologies to Greening the Economy -- 2.3 A Brief Note on Business Strategy and Corporate Greening -- 2.4 The Past: An Account of the Historical Relationship Between the Chemical Industry and the Environment -- 2.5 The Present: From Pollution Control to Corporate Environmental Sustainability -- 2.6 The Future: Environmentally Sustainable Manufacturing and Eco-innovation -- 2.7 Conclusion: Greening or Sustainability in Chemical Manufacturing? -- References -- 3. Designing Sustainable Chemical Synthesis: The Influence of Chemistry on Process Design -- 3.1 Introduction -- 3.2 Green Chemistry -- 3.3 Green Engineering -- 3.4 Sustainability Metrics -- 3.5 Designing a Sustainable Process -- 3.6 Merck Case Study -- 3.7 Conclusion -- References -- 4. Green Chemical Processing in the Teaching Laboratory: Microwave Extraction of Natural Products -- 4.1 Introduction -- 4.2 Microwave versus Conventional Heating -- 4.3 Experimental -- 4.3.1 Hydrodistillation (HD) Procedure -- 4.3.2 Microwave Hydrodiffusion and Gravity Procedure.

4.3.3 Analysis of Essential Oil -- 4.4 Advantages -- 4.4.1 Green Production Rapidity -- 4.4.2 Green Production Efficiency -- 4.4.3 Green Production Courses -- 4.4.4 Green Production Messages -- 4.4.5 Safety Considerations -- 4.5 Conclusion -- Acknowledgements -- References -- 5. Ensuring Sustainability through Microscale Chemistry -- 5.1 Introduction to Microscale Chemistry -- 5.2 Development of Microscale Chemistry Experiments for Upper Secondary Schools -- 5.2.1 Microscale Chemistry Experiments -- 5.2.2 Cost-benefit Analysis -- 5.3 Teachers' Evaluation -- 5.3.1 Workshops -- 5.3.2 Focused Group Discussions -- 5.4 Students' Feedback -- 5.4.1 Analyses of Open Comments from Students -- 5.4.2 Interviews -- 5.5 Conclusion -- References -- 6. Capability Development and Technology Transfer Essential for Economic Transformation -- 6.1 Introduction -- 6.2 The Importance of R&D -- 6.2.1 Research and Development Expenditure -- 6.3 Knowledge Creation and Technology Transfer -- 6.3.1 Development of an RDT Voucher System -- 6.3.2 External Engagement -- 6.3.3 Organizational RDT Planning -- 6.3.4 Structural Changes -- 6.4 Technology Transfer Future -- 6.5 Applications to Green Chemistry -- 6.6 Conclusions -- Acknowledgements -- References -- PART 2 Green Lab Technologies -- 7. Ultrasound Cavitation as a Green Processing Technique in the Design and Manufacture of Pharmaceutical Nanoemulsions in Drug Delivery System -- 7.1 Introduction -- 7.2 Types of Emulsion and Principles of Nanoemulsion Formation -- 7.3 Formulation Aspects of Nanoemulsion -- 7.4 The Ultrasonic Domain -- 7.5 What is Ultrasound Cavitation? -- 7.6 Ultrasound Generation -- 7.7 Principle and Operation of Ultrasound Emulsification -- 7.8 Types of Ultrasound Emulsification: Batch and Dynamic Systems -- 7.9 Advantages of Ultrasound Emulsification -- 7.10 General Reviews of Ultrasound Emulsification.

7.11 Nanoemulsion in Pharmaceutical Application -- 7.12 Characterization of Nanoemulsion Drug Delivery System -- 7.12.1 Particle Surface Morphology and Size Distribution -- 7.12.2 Solubility Enhancement -- 7.12.3 Drug Encapsulation and Loading Efficiency -- 7.12.4 Drug Release -- 7.12.5 Ultrasonic-mediated Drug Release -- 7.12.6 Site Specific Drug Targeting -- 7.12.7 Stability -- 7.13 Practical and Potential Applications of Nanoemulsion in Different Administration Routes -- 7.13.1 Parenteral Drug Delivery -- 7.13.2 Oral Drug Delivery -- 7.13.3 Topical Drug Delivery -- 7.14 Conclusion -- Acknowledgement -- References -- 8. Microwave-Enhanced Methods for Biodiesel Production and Other Environmental Applications -- 8.1 Introduction -- 8.2 Microwave Energy -- 8.2.1 Microwave Energy as a Heat Source -- 8.2.2 Microwave-Enhanced Biodiesel Synthesis -- 8.3 Biodiesel Production Using Different Feedstock -- 8.3.1 Biodiesel Production from Edible and Non-edible Oils -- 8.3.2 Biodiesel Production from Algae -- 8.4 Energy Consumption -- 8.4.1 Kinetics Study -- 8.4.2 Comparison Between Supercritical and Microwave Assisted Algal Biodiesel Production -- 8.5 Analysis of Algal Biomass and Biodiesel -- 8.5.1 TEM Analysis of Algal Biomass -- 8.5.2 GC-MS Analysis of Algal Biodiesel from Wet Algae -- 8.5.3 TLC Analysis of Algal Biodiesel from Dry Algae -- 8.6 Current Status of the Microwave Technology for Large Scale Biodiesel Production -- 8.7 Other Microwave-enhanced Applications -- 8.7.1 Microwave Applications in Organic Synthesis -- 8.7.2 Microwave Applications for Green Environment -- 8.8 Summary -- References -- 9. Emergence of Base Catalysts for Synthesis of Biodiesel -- 9.1 Introduction -- 9.2 Mechanism of Heterogeneous Catalysis -- 9.3 Calcium Oxide and Magnesium Oxide -- 9.4 Hydrotalcite Doped Compounds -- 9.5 Alumina Loaded Compounds -- 9.6 Zeolite.

9.7 Conclusions -- Acknowledgement -- References -- 10. Hydrothermal Technologies for the Production of Fuels and Chemicals from Biomass -- 10.1 Introduction -- 10.2 Thermochemical Processes for Biomass -- 10.2.1 Gasification -- 10.2.2 Pyrolysis -- 10.2.3 Direct Liquefaction -- 10.3 Green Chemistry and Hydrothermal Liquefaction -- 10.3.1 Upgrading Biocrude Oils -- 10.4 Hydro-Deoxygenation Upgrading -- 10.5 Zeolite Upgrading -- 10.5.1 Zeolite Upgrading of Pyrolysis Bio-oils -- 10.5.2 Zeolite Upgrading of Liquefaction Biocrude -- 10.5.3 Bio-oil Emulsification -- 10.5.4 Steam Reforming Bio-oil -- 10.5.5 HTU® technology -- 10.5.6 Thermal Depolymerization Process (TDP) Technology -- 10.6 Conclusions -- References -- 11. Ionic Liquids in Green Chemistry - Prediction of Ionic Liquids Toxicity Using Different Models -- 11.1 Introduction -- 11.1.1 Ionic Liquids -- 11.1.2 Ionic Liquids: Applications -- 11.1.3 Ionic Liquid Toxicity -- 11.2 Conclusions -- References -- 12. Nano-catalyst: A Second Generation Tool for Green Chemistry -- 12.1 Introduction -- 12.2 Nanocatalyst: An Origin of a Green Concept -- 12.3 Recent Advances in Nanocatalysis -- 12.3.1 Synthesis of Nano-catalysts -- 12.3.2 Applications -- 12.4 Challenges and Future Scope -- 12.5 Conclusion -- Acknowledgements -- References -- 13. Green Polymer Synthesis: An Overview on Use of Microwave-Irradiation -- 13.1 Introduction -- 13.2 Radical Polymerization -- 13.2.1 Free Radical Homopolymerization -- 13.2.2 Free Radical Copolymerizations -- 13.2.3 Synthesis of Composites by Free Radical Polymerization -- 13.2.4 Emulsion Polymerization -- 13.2.5 Controlled Radical Polymerization -- 13.3 Step Growth Polymerization -- 13.3.1 Synthesis of Poly(amide)s -- 13.3.2 Synthesis of Poly(imide)s -- 13.3.3 Synthesis of Poly(ether)s -- 13.3.4 Synthesis of Poly(ester)s.

13.3.5 Synthesis of Poly(urea)s and Poly(urethane)s -- 13.3.6 Synthesis of Poly(anhydride)s -- 13.3.7 Synthesis of Poly(amide-imide)s, Poly (amide-ester)s, Poly(ether-ester)s, Poly(ester-imide)s, Poly (ether-imide)s, Poly(amino-quinone) and other Polycondensation Reactions -- 13.3.8 Copolymerization -- 13.4 Ring Opening Polymerization -- 13.4.1 Ring Opening Polymerization of Cyclic Esters -- 13.4.2 Enzyme Catalyzed Ring Opening Polymerization -- 13.4.3 Cationic/Anionic Ring Opening Polymerizations -- 13.4.4 Ring Opening Copolymerization -- 13.5 Polymer Modifications -- 13.5.1 Polymer Crosslinking/Curing -- 13.5.2 Formation of Hydrogels -- 13.5.3 Polymer Composites -- 13.5.4 Processing of Polymeric Scaffolds and Particles -- 13.5.5 Polymer Blends -- 13.6 Miscellaneous Polymer Synthesis -- 13.6.1 Syntheses of Polypeptides -- 13.7 Conclusions and Perspectives -- References -- PART 3 Green Bio-energy Sources -- 14. Bioenergy as a Green Technology Frontier -- 14.1 Introduction -- 14.2 Bioenergy Life Cycles -- 14.2.1 Land-use Changes -- 14.2.2 Resource Demand (other inputs) -- 14.2.3 Process Contribution to Energy Demand (fossil fuel inputs) -- 14.3 Transportation Biofuels -- 14.3.1 Oil Crops for Biodiesel -- 14.3.2 Carbohydrate Crops for Ethanol -- 14.4 Thermochemical Conversion of Biomass -- 14.5 Biogas -- 14.5.1 Anaerobic Digestion and Methane Production -- 14.5.2 Biohydrogen -- 14.6 Microbial Fuel Cells -- 14.7 Future Prospects -- References -- 15. Biofuels as Suitable Replacement for Fossil Fuels -- 15.1 Introduction -- 15.2 Types of Biofuels and Technologies for their Production -- 15.2.1 Biodiesel -- 15.2.2 Bioalcohols -- 15.2.3 Biogas and Biohydrogen -- 15.2.4 Liquid Hydrocarbon Fuels (LHF) -- 15.3 Future Prospects and Conclusions -- Acknowledgments -- References -- 16. Biocatalysts for Greener Solutions -- 16.1 Introduction.

16.1.1 Challenges Facing Green Chemistry.
Özet:
The book presents an in depth review from eminent industry practitioners and researchers of the emerging green face of multidimensional environmental chemistry. Topics such as green chemistry in industry, green energy: solar photons to fuels, green nanotechnology and sustainability, and green chemistry modeling address a wide array of iusses encouraging the use of economical ecofriendly benign technologies, which not only improve the yield, but also illustrates the concept of zero waste, a subject of interest to both chemists and environmentalists alike.
Notlar:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Yazar Ek Girişi:
Elektronik Erişim:
Click to View
Ayırtma: Copies: