Distance estimation in tabletop molecular communication için kapak resmi
Distance estimation in tabletop molecular communication
Başlık:
Distance estimation in tabletop molecular communication
Yazar:
Uzun, Emrehan, author.
Yazar Ek Girişi:
Fiziksel Tanımlama:
ix, 42 leaves: color illustrarions, charts;+ 1 computer laser optical disc.
Özet:
Although existing communication technologies based on electrical and electromagnetic signals are applicable for a variety of applications, these technologies are insufficient in some applications. Especially, developments in nanotechnology and biotechnology require an alternative communication paradigm. Molecular communication (MC) paradigm is a promising solution needed to fill the gap in both nano- and macroscale. It is one of the oldest communication paradigm in which molecules are used as information carrier. Its mechanism provides a basis for all living organisms from unicellular bacteria to humankind to continue their existence. For instance, the information transfer among nerve cells is accomplished via MC. These kind of biological activities inspire a base for communication between nanomachines. The realization of MC occurs by sending and receiving molecules between nanomachines. The information about distance between transmitter (Tx) and receiver (Rx) is one of the critical points to enable an efficient performance in terms of clock synchronization, transmission rate, etc. in the design of MC system. However, most of the existing works on MC are based on the assumption distance is pre-known. In addition, the proposed theoretical methods are validated using an ideal simulation environment. Furthermore, there is a limited number of studies about macroscale practical applications. In this thesis, an end-to-end tabletop MC testbed is established to transmit chemical signals from a Tx to Rx. This testbed allows us to provide an estimate about the distance using molecular information received by the Rx. In the development of the estimation algorithms, the principles of molecular random walk are used. We propose three novel approaches that are called as peak time, correlation based and relative entropy based approaches to estimate the distance between Tx and Rx for a practical MC system. The performance of the proposed estimation methods is evaluated in the tabletop MC testbed. The experimental results shows that our proposed methods present a satisfactory performance in terms of estimation error and the methods can be used to develop new potential macro-scale MC applications.
Yazar Ek Girişi:
Tek Biçim Eser Adı:
Thesis (Master)--İzmir Institute of Technology:Electronics and Communication Engineering.

İzmir Institute of Technology: Electronics and Communication Engineering--Thesis (Master).
Elektronik Erişim:
Access to Electronic Versiyon.
Ayırtma: Copies: