Wind turbine control via power measurements in complex terrain için kapak resmi
Wind turbine control via power measurements in complex terrain
Başlık:
Wind turbine control via power measurements in complex terrain
Yazar:
Dirik, Deniz Gökhan, author.
Fiziksel Tanımlama:
viii, 60 leaves: charts;+ 1 computer laser optical disc.
Özet:
This work presents an approach to the assessment of wind farm yaw control to utilize wake steering in complex terrain based on power measurements. Aerodynamic interactions between closely spaced wind turbines reduce the power output significantly. The standard wind turbine control strategy currently focuses on optimizing the wind turbines individually. However, there is growing evidence that these wake losses can be improved by optimizing for aerodynamic interactions between the turbines. In a case study, an assessment of wake steering gain and optimum yaw offset angles for each wind turbine are simulated for an operational wind farm. Wake losses are simulated for the wind farm and are validated using historical power measurements. Data analysis procedures for implementing operational wind farm data for the wake steering approach are described. Optimum yaw offset angles are calculated in simulations using operational data. A lookup table is generated for the optimum yaw angles required for each wind direction and speed bin. Using 5-year-long operational data, an average of 0.48% wake losses are calculated for the site. FLORIS simulations suggest 9.6% possible power improvement in wake losses using the optimum yaw offset angles. Using SCADA measurements for potential wake steering assessment allows rapid assessment and implementation without requiring expensive and year-long LIDAR or meteorological mast tower measurements.
Tek Biçim Eser Adı:
Thesis (Master)--İzmir Institute of Technology:Energy Engineering.

İzmir Institute of Technology: Energy Engineering--Thesis (Master).
Elektronik Erişim:
Access to Electronic Versiyon.
Ayırtma: Copies: